論文の概要: Fairpriori: Improving Biased Subgroup Discovery for Deep Neural Network Fairness
- arxiv url: http://arxiv.org/abs/2407.01595v1
- Date: Tue, 25 Jun 2024 00:15:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-07 13:24:39.568018
- Title: Fairpriori: Improving Biased Subgroup Discovery for Deep Neural Network Fairness
- Title(参考訳): Fairpriori: ディープニューラルネットワークフェアネスのためのバイアス付きサブグループディスカバリの改善
- Authors: Kacy Zhou, Jiawen Wen, Nan Yang, Dong Yuan, Qinghua Lu, Huaming Chen,
- Abstract要約: 本稿では,新しいバイアス付きサブグループ発見法であるFairprioriを紹介する。
このアルゴリズムは、交差点バイアスの効率的かつ効率的な調査を容易にするために、頻繁なアイテムセット生成アルゴリズムを組み込んでいる。
フェアプリオリは交叉バイアスを特定する際に優れた効果と効率を示す。
- 参考スコア(独自算出の注目度): 21.439820064223877
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While deep learning has become a core functional module of most software systems, concerns regarding the fairness of ML predictions have emerged as a significant issue that affects prediction results due to discrimination. Intersectional bias, which disproportionately affects members of subgroups, is a prime example of this. For instance, a machine learning model might exhibit bias against darker-skinned women, while not showing bias against individuals with darker skin or women. This problem calls for effective fairness testing before the deployment of such deep learning models in real-world scenarios. However, research into detecting such bias is currently limited compared to research on individual and group fairness. Existing tools to investigate intersectional bias lack important features such as support for multiple fairness metrics, fast and efficient computation, and user-friendly interpretation. This paper introduces Fairpriori, a novel biased subgroup discovery method, which aims to address these limitations. Fairpriori incorporates the frequent itemset generation algorithm to facilitate effective and efficient investigation of intersectional bias by producing fast fairness metric calculations on subgroups of a dataset. Through comparison with the state-of-the-art methods (e.g., Themis, FairFictPlay, and TestSGD) under similar conditions, Fairpriori demonstrates superior effectiveness and efficiency when identifying intersectional bias. Specifically, Fairpriori is easier to use and interpret, supports a wider range of use cases by accommodating multiple fairness metrics, and exhibits higher efficiency in computing fairness metrics. These findings showcase Fairpriori's potential for effectively uncovering subgroups affected by intersectional bias, supported by its open-source tooling at https://anonymous.4open.science/r/Fairpriori-0320.
- Abstract(参考訳): ディープラーニングは、ほとんどのソフトウェアシステムの中核機能モジュールとなっているが、ML予測の公平性に関する懸念が、差別による予測結果に影響を与える重要な問題として浮上している。
部分群のメンバーに不均等に影響を及ぼす断面積バイアスは、この主要な例である。
例えば、機械学習モデルでは、より浅黒い肌の女性に対するバイアスを示すが、より暗い肌や女性に対するバイアスは示さない。
この問題は、現実世界のシナリオでこのようなディープラーニングモデルをデプロイする前に、効果的な公平性テストを要求する。
しかしながら、そのようなバイアスを検出する研究は、現在、個人やグループフェアネスの研究と比較して限られている。
交差バイアスを調査する既存のツールには、複数の公正度メトリクスのサポート、高速で効率的な計算、ユーザフレンドリな解釈など、重要な機能が欠けている。
本稿では,これらの制約に対処する新しいバイアス付きサブグループ探索法であるFairprioriを紹介する。
Fairprioriは、データセットのサブグループ上で高速公正度メートル法計算を作成することにより、交差点バイアスの効率的かつ効率的な調査を容易にするために、頻繁なアイテムセット生成アルゴリズムを組み込んでいる。
同様の条件下での最先端の手法(例えば、Themis、FairFictPlay、TestSGD)と比較して、Fairprioriは交差バイアスを識別する際の優れた効率と効率を示す。
具体的には、Fairprioriは使いやすく、解釈しやすく、複数のフェアネスメトリクスを収容することで幅広いユースケースをサポートし、コンピューティングフェアネスメトリクスの効率を高める。
これらの結果は、Fairprioriが交差点バイアスの影響を効果的に発見する可能性を示し、https://anonymous.4open.science/r/Fairpriori-0320のオープンソースツールが支持している。
関連論文リスト
- Outlier Detection Bias Busted: Understanding Sources of Algorithmic Bias through Data-centric Factors [28.869581543676947]
unsupervised outlier detection (OD) は、金融、セキュリティ等に多くの応用がある。
この研究は、データ中心の異なる要因の下で検出モデルを監査することで、ODの不公平な源泉に光を当てることを目的としている。
この研究に基づくODアルゴリズムは、すべて公正な落とし穴を示すが、どの種類のデータバイアスがより影響を受けやすいかは異なる。
論文 参考訳(メタデータ) (2024-08-24T20:35:32Z) - AIM: Attributing, Interpreting, Mitigating Data Unfairness [40.351282126410545]
既存の公正機械学習(FairML)の研究は、モデル予測における差別バイアスの軽減に重点を置いている。
トレーニングデータからバイアスや偏見を反映したサンプルの発見という,新たな研究課題について検討する。
サンプルバイアスの測定と対策のための実用的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-13T05:21:10Z) - Fast Model Debias with Machine Unlearning [54.32026474971696]
ディープニューラルネットワークは多くの現実世界のシナリオでバイアスのある振る舞いをする。
既存のデバイアス法は、バイアスラベルやモデル再トレーニングのコストが高い。
バイアスを特定し,評価し,除去するための効率的なアプローチを提供する高速モデル脱バイアスフレームワーク(FMD)を提案する。
論文 参考訳(メタデータ) (2023-10-19T08:10:57Z) - Fair Enough: Standardizing Evaluation and Model Selection for Fairness
Research in NLP [64.45845091719002]
現代のNLPシステムは様々なバイアスを示しており、モデル偏見に関する文献が増えている。
本稿では,その現状を解明し,公正学習における意味ある進歩の道筋を立案することを目的とする。
論文 参考訳(メタデータ) (2023-02-11T14:54:00Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
D-BIASは、人間のループ内AIアプローチを具現化し、社会的バイアスを監査し軽減する視覚対話型ツールである。
ユーザは、因果ネットワークにおける不公平な因果関係を識別することにより、グループに対する偏見の存在を検出することができる。
それぞれのインタラクション、例えばバイアスのある因果縁の弱体化/削除は、新しい(偏りのある)データセットをシミュレートするために、新しい方法を用いている。
論文 参考訳(メタデータ) (2022-08-10T03:41:48Z) - Understanding Unfairness in Fraud Detection through Model and Data Bias
Interactions [4.159343412286401]
アルゴリズムの不公平性は、データ内のモデルとバイアスの間の相互作用に起因すると我々は主張する。
フェアネスブラインドMLアルゴリズムが示す公平さと正確さのトレードオフに関する仮説を、異なるデータバイアス設定下で検討する。
論文 参考訳(メタデータ) (2022-07-13T15:18:30Z) - Fair Group-Shared Representations with Normalizing Flows [68.29997072804537]
本研究では,異なるグループに属する個人を1つのグループにマッピングできる公正表現学習アルゴリズムを開発した。
提案手法は,他の公正表現学習アルゴリズムと競合することを示す。
論文 参考訳(メタデータ) (2022-01-17T10:49:49Z) - Fairness-aware Class Imbalanced Learning [57.45784950421179]
つぶやきの感情と職業分類のロングテール学習手法を評価する。
フェアネスを強制する手法により、マージンロスに基づくアプローチを拡張します。
論文 参考訳(メタデータ) (2021-09-21T22:16:30Z) - Fairness Through Robustness: Investigating Robustness Disparity in Deep
Learning [61.93730166203915]
我々は、モデルが敵の攻撃に弱い場合、従来の公平性の概念では不十分であると主張する。
頑健性バイアスを測定することはDNNにとって難しい課題であり,この2つの方法を提案する。
論文 参考訳(メタデータ) (2020-06-17T22:22:24Z) - A survey of bias in Machine Learning through the prism of Statistical
Parity for the Adult Data Set [5.277804553312449]
偏見を自動決定にどのように導入できるかを理解することの重要性を示す。
まず、公正学習問題、特に二項分類設定における数学的枠組みについて述べる。
そこで,本研究では,現実およびよく知られた成人所得データセットの標準差分効果指標を用いて,偏見の有無を定量化することを提案する。
論文 参考訳(メタデータ) (2020-03-31T14:48:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。