論文の概要: SelfGNN: Self-Supervised Graph Neural Networks for Sequential Recommendation
- arxiv url: http://arxiv.org/abs/2405.20878v1
- Date: Fri, 31 May 2024 14:53:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 14:08:24.875527
- Title: SelfGNN: Self-Supervised Graph Neural Networks for Sequential Recommendation
- Title(参考訳): SelfGNN:Self-Supervised Graph Neural Networks for Sequential Recommendation
- Authors: Yuxi Liu, Lianghao Xia, Chao Huang,
- Abstract要約: 本稿では,SelfGNN(Self-Supervised Graph Neural Network)と呼ばれる新しいフレームワークを提案する。
SelfGNNフレームワークは、時間間隔に基づいて短期グラフを符号化し、グラフニューラルネットワーク(GNN)を使用して短期的な協調関係を学習する。
パーソナライズされた自己強化学習構造は、長期のユーザ関心と個人の安定性に基づいて、短期的なグラフにおけるノイズを緩和することにより、モデルロバスト性を高める。
- 参考スコア(独自算出の注目度): 15.977789295203976
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sequential recommendation effectively addresses information overload by modeling users' temporal and sequential interaction patterns. To overcome the limitations of supervision signals, recent approaches have adopted self-supervised learning techniques in recommender systems. However, there are still two critical challenges that remain unsolved. Firstly, existing sequential models primarily focus on long-term modeling of individual interaction sequences, overlooking the valuable short-term collaborative relationships among the behaviors of different users. Secondly, real-world data often contain noise, particularly in users' short-term behaviors, which can arise from temporary intents or misclicks. Such noise negatively impacts the accuracy of both graph and sequence models, further complicating the modeling process. To address these challenges, we propose a novel framework called Self-Supervised Graph Neural Network (SelfGNN) for sequential recommendation. The SelfGNN framework encodes short-term graphs based on time intervals and utilizes Graph Neural Networks (GNNs) to learn short-term collaborative relationships. It captures long-term user and item representations at multiple granularity levels through interval fusion and dynamic behavior modeling. Importantly, our personalized self-augmented learning structure enhances model robustness by mitigating noise in short-term graphs based on long-term user interests and personal stability. Extensive experiments conducted on four real-world datasets demonstrate that SelfGNN outperforms various state-of-the-art baselines. Our model implementation codes are available at https://github.com/HKUDS/SelfGNN.
- Abstract(参考訳): シーケンシャルレコメンデーションは、ユーザの時間的およびシーケンシャルなインタラクションパターンをモデル化することによって、情報の過負荷を効果的に解決する。
監視信号の限界を克服するために、近年のアプローチでは、推薦システムに自己教師あり学習技術を採用している。
しかし、未解決のままの2つの重要な課題がある。
まず、既存のシーケンシャルモデルでは、個々のインタラクションシーケンスの長期モデリングに重点を置いており、異なるユーザの振る舞い間の価値ある短期的協調関係を見越している。
第二に、現実世界のデータにはノイズがしばしば含まれており、特にユーザの短期的な行動は、一時的な意図や誤クリックから生じる可能性がある。
このようなノイズはグラフとシーケンスモデルの精度に悪影響を及ぼし、モデリングプロセスをさらに複雑にする。
これらの課題に対処するために、シーケンシャルレコメンデーションのためのSelf-Supervised Graph Neural Network (SelfGNN) と呼ばれる新しいフレームワークを提案する。
SelfGNNフレームワークは、時間間隔に基づいて短期グラフを符号化し、グラフニューラルネットワーク(GNN)を使用して短期的な協調関係を学習する。
インターバルフュージョンと動的振る舞いモデリングにより、長期のユーザとアイテムの表現を複数の粒度レベルでキャプチャする。
重要なことは、我々のパーソナライズされた自己強化学習構造は、長期的なユーザ関心と個人の安定性に基づいて、短期的なグラフにおけるノイズを緩和することにより、モデルロバスト性を高めることである。
4つの実世界のデータセットで実施された大規模な実験は、SelfGNNが様々な最先端のベースラインを上回っていることを示している。
私たちのモデル実装コードはhttps://github.com/HKUDS/SelfGNN.comで公開されています。
関連論文リスト
- DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
動的グラフ学習は、現実世界のシステムにおける進化の法則を明らかにすることを目的としている。
動的グラフ学習のための新しい連続状態空間モデルDyG-Mambaを提案する。
我々はDyG-Mambaがほとんどのデータセットで最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2024-08-13T15:21:46Z) - Multi-Scale Spatial-Temporal Self-Attention Graph Convolutional Networks for Skeleton-based Action Recognition [0.0]
本稿では,マルチスケール空間時間自己注意(MSST)-GCNという自己注意型GCNハイブリッドモデルを提案する。
適応トポロジを持つ空間自己保持モジュールを用いて、異なる身体部分間のフレーム内相互作用を理解するとともに、時間的自己保持モジュールを用いてノードのフレーム間の相関関係を調べる。
論文 参考訳(メタデータ) (2024-04-03T10:25:45Z) - Multi-Scene Generalized Trajectory Global Graph Solver with Composite
Nodes for Multiple Object Tracking [61.69892497726235]
複合ノードメッセージパッシングネットワーク(CoNo-Link)は、超長いフレーム情報を関連付けるためのフレームワークである。
オブジェクトをノードとして扱う従来の方法に加えて、このネットワークは情報インタラクションのためのノードとしてオブジェクトトラジェクトリを革新的に扱う。
我々のモデルは、合成ノードを追加することで、より長い時間スケールでより良い予測を学習することができる。
論文 参考訳(メタデータ) (2023-12-14T14:00:30Z) - TempGNN: Temporal Graph Neural Networks for Dynamic Session-Based
Recommendations [5.602191038593571]
テンポラルグラフニューラルネットワーク(TempGNN)は、複雑なアイテム遷移における構造的・時間的ダイナミクスを捉えるための一般的なフレームワークである。
TempGNNは、2つの現実世界のEコマースデータセットで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-10-20T03:13:10Z) - iLoRE: Dynamic Graph Representation with Instant Long-term Modeling and
Re-occurrence Preservation [21.15310868951046]
iLoREは,ノードワイド長期モデリングと再帰保存が可能な動的グラフモデリング手法である。
実世界のデータセットに対する実験結果から,動的グラフモデリングにおけるiLoREの有効性が示された。
論文 参考訳(メタデータ) (2023-09-05T07:48:52Z) - Local-Global Information Interaction Debiasing for Dynamic Scene Graph
Generation [51.92419880088668]
マルチタスク学習に基づく新しいDynSGGモデルDynSGG-MTLを提案する。
長期的人間の行動は、大域的な制約に適合する複数のシーングラフを生成するためにモデルを監督し、尾の述語を学べないモデルを避ける。
論文 参考訳(メタデータ) (2023-08-10T01:24:25Z) - TodyNet: Temporal Dynamic Graph Neural Network for Multivariate Time
Series Classification [6.76723360505692]
未定義のグラフ構造を使わずに隠蔽時間依存を抽出できる新しい時間的動的グラフネットワーク(TodyNet)を提案する。
26のUEAベンチマークデータセットの実験は、提案されたTodyNetがMTSCタスクで既存のディープラーニングベースのメソッドより優れていることを示している。
論文 参考訳(メタデータ) (2023-04-11T09:21:28Z) - Long-term Spatio-temporal Forecasting via Dynamic Multiple-Graph
Attention [20.52864145999387]
長期的テンソル時間予測(LSTF)は、空間的領域と時間的領域、文脈的情報、およびデータ固有のパターン間の長期的依存関係を利用する。
本稿では,各ノードのコンテキスト情報と長期駐車による時間的データ依存構造を表現する新しいグラフモデルを提案する。
提案手法は,LSTF予測タスクにおける既存のグラフニューラルネットワークモデルの性能を大幅に向上させる。
論文 参考訳(メタデータ) (2022-04-23T06:51:37Z) - EIGNN: Efficient Infinite-Depth Graph Neural Networks [51.97361378423152]
グラフニューラルネットワーク(GNN)は多くのアプリケーションでグラフ構造化データのモデリングに広く利用されている。
この制限により、無限深度GNNモデルを提案し、これをEIGNN(Efficient Infinite-Depth Graph Neural Networks)と呼ぶ。
EIGNNは、最近のベースラインよりも長距離依存関係をキャプチャする能力が優れており、常に最先端のパフォーマンスを実現していることを示す。
論文 参考訳(メタデータ) (2022-02-22T08:16:58Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
近年、時間グラフモデリング問題として交通予測の定式化に焦点が移っている。
本稿では,道路網における交通予測の精度向上のための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-25T08:45:14Z) - Causal Incremental Graph Convolution for Recommender System Retraining [89.25922726558875]
実世界のレコメンデーションシステムは、新しいデータを維持するために定期的に再トレーニングする必要がある。
本研究では,GCNに基づくレコメンデータモデルを用いて,グラフ畳み込みネットワーク(GCN)を効率的に再学習する方法を検討する。
論文 参考訳(メタデータ) (2021-08-16T04:20:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。