Nonparametric regression on random geometric graphs sampled from submanifolds
- URL: http://arxiv.org/abs/2405.20909v2
- Date: Mon, 04 Nov 2024 09:30:04 GMT
- Title: Nonparametric regression on random geometric graphs sampled from submanifolds
- Authors: Paul Rosa, Judith Rousseau,
- Abstract summary: We analyze the frequentist behaviour of the posterior distribution arising from Bayesian priors designed through random basis expansion.
We prove that the posterior contraction rates of such methods are minimax optimal (up to logarithmic factors) for any positive smoothness index.
- Score: 2.3326951882644553
- License:
- Abstract: We consider the nonparametric regression problem when the covariates are located on an unknown smooth compact submanifold of a Euclidean space. Under defining a random geometric graph structure over the covariates we analyze the asymptotic frequentist behaviour of the posterior distribution arising from Bayesian priors designed through random basis expansion in the graph Laplacian eigenbasis. Under Holder smoothness assumption on the regression function and the density of the covariates over the submanifold, we prove that the posterior contraction rates of such methods are minimax optimal (up to logarithmic factors) for any positive smoothness index.
Related papers
- High-Dimensional Kernel Methods under Covariate Shift: Data-Dependent Implicit Regularization [83.06112052443233]
This paper studies kernel ridge regression in high dimensions under covariate shifts.
By a bias-variance decomposition, we theoretically demonstrate that the re-weighting strategy allows for decreasing the variance.
For bias, we analyze the regularization of the arbitrary or well-chosen scale, showing that the bias can behave very differently under different regularization scales.
arXiv Detail & Related papers (2024-06-05T12:03:27Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
We show that a step size agnostic to the curvature of the manifold achieves a curvature-independent and linear last-iterate convergence rate.
To the best of our knowledge, the possibility of curvature-independent rates and/or last-iterate convergence has not been considered before.
arXiv Detail & Related papers (2023-06-29T01:20:44Z) - High-dimensional analysis of double descent for linear regression with
random projections [0.0]
We consider linear regression problems with a varying number of random projections, where we provably exhibit a double descent curve for a fixed prediction problem.
We first consider the ridge regression estimator and re-interpret earlier results using classical notions from non-parametric statistics.
We then compute equivalents of the generalization performance (in terms of bias and variance) of the minimum norm least-squares fit with random projections, providing simple expressions for the double descent phenomenon.
arXiv Detail & Related papers (2023-03-02T15:58:09Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
Motivated by the problem of online correlation analysis, we propose the emphStochastic Scaled-Gradient Descent (SSD) algorithm.
We bring these ideas together in an application to online correlation analysis, deriving for the first time an optimal one-time-scale algorithm with an explicit rate of local convergence to normality.
arXiv Detail & Related papers (2021-12-29T18:46:52Z) - On the Double Descent of Random Features Models Trained with SGD [78.0918823643911]
We study properties of random features (RF) regression in high dimensions optimized by gradient descent (SGD)
We derive precise non-asymptotic error bounds of RF regression under both constant and adaptive step-size SGD setting.
We observe the double descent phenomenon both theoretically and empirically.
arXiv Detail & Related papers (2021-10-13T17:47:39Z) - Geometric convergence of elliptical slice sampling [0.0]
We show that the corresponding Markov chain is geometrically ergodic and therefore yield qualitative convergence guarantees.
Remarkably, our numerical experiments indicate a dimension-independent performance of elliptical slice sampling even in situations where our ergodicity result does not apply.
arXiv Detail & Related papers (2021-05-07T15:00:30Z) - Spectral clustering under degree heterogeneity: a case for the random
walk Laplacian [83.79286663107845]
This paper shows that graph spectral embedding using the random walk Laplacian produces vector representations which are completely corrected for node degree.
In the special case of a degree-corrected block model, the embedding concentrates about K distinct points, representing communities.
arXiv Detail & Related papers (2021-05-03T16:36:27Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
inductive biases are central in preventing overfitting empirically.
This work considers this issue in arguably the most basic setting: constant-stepsize SGD for linear regression.
We reflect on a number of notable differences between the algorithmic regularization afforded by (unregularized) SGD in comparison to ordinary least squares.
arXiv Detail & Related papers (2021-03-23T17:15:53Z) - Kernel Methods for Causal Functions: Dose, Heterogeneous, and
Incremental Response Curves [26.880628841819004]
We prove uniform consistency with improved finite sample rates via original analysis of generalized kernel ridge regression.
We extend our main results to counterfactual distributions and to causal functions identified by front and back door criteria.
arXiv Detail & Related papers (2020-10-10T00:53:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.