An Attention-Based Multi-Context Convolutional Encoder-Decoder Neural Network for Work Zone Traffic Impact Prediction
- URL: http://arxiv.org/abs/2405.21045v1
- Date: Fri, 31 May 2024 17:38:49 GMT
- Title: An Attention-Based Multi-Context Convolutional Encoder-Decoder Neural Network for Work Zone Traffic Impact Prediction
- Authors: Qinhua Jiang, Xishun Liao, Yaofa Gong, Jiaqi Ma,
- Abstract summary: Work zone is one of the major causes of non-recurrent traffic congestion and road incidents.
We propose a data integration pipeline that enhances the utilization of work zone and traffic data from diversified platforms.
We introduce a novel deep learning model to predict the traffic speed and incident likelihood during planned work zone events.
- Score: 6.14400858731508
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Work zone is one of the major causes of non-recurrent traffic congestion and road incidents. Despite the significance of its impact, studies on predicting the traffic impact of work zones remain scarce. In this paper, we propose a data integration pipeline that enhances the utilization of work zone and traffic data from diversified platforms, and introduce a novel deep learning model to predict the traffic speed and incident likelihood during planned work zone events. The proposed model transforms traffic patterns into 2D space-time images for both model input and output and employs an attention-based multi-context convolutional encoder-decoder architecture to capture the spatial-temporal dependencies between work zone events and traffic variations. Trained and validated on four years of archived work zone traffic data from Maryland, USA, the model demonstrates superior performance over baseline models in predicting traffic speed, incident likelihood, and inferred traffic attributes such as queue length and congestion timings (i.e., start time and duration). Specifically, the proposed model outperforms the baseline models by reducing the prediction error of traffic speed by 5% to 34%, queue length by 11% to 29%, congestion timing by 6% to 17%, and increasing the accuracy of incident predictions by 5% to 7%. Consequently, this model offers substantial promise for enhancing the planning and traffic management of work zones.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Accounting for Work Zone Disruptions in Traffic Flow Forecasting [2.124091149604821]
We build over the convolutional graph neural network architecture and present a novel Graph Convolutional for Road Work Zones" model.
The model is evaluated on two data sets that minimize traffic in presence of work zones in the Commonwealth of Virginia.
arXiv Detail & Related papers (2024-07-16T05:48:24Z) - Enhancing Traffic Flow Prediction using Outlier-Weighted AutoEncoders:
Handling Real-Time Changes [0.7614628596146602]
We introduce the Outlier Weighted Autoencoder Modeling (OWAM) framework.
OWAM employs autoencoders for local outlier detection and generates correlation scores to assess neighboring traffic's influence.
This information enhances the traffic model's performance and supports effective real-time updates.
arXiv Detail & Related papers (2023-12-27T14:44:58Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - A Graph and Attentive Multi-Path Convolutional Network for Traffic
Prediction [16.28015945020806]
We propose a graph and attentive multi-path convolutional network (GAMCN) model to predict traffic conditions into the future.
Our model focuses on the spatial and temporal factors that impact traffic conditions.
Our model outperforms state-of-art traffic prediction models by up to 18.9% in terms of prediction errors and 23.4% in terms of prediction efficiency.
arXiv Detail & Related papers (2022-05-30T16:24:43Z) - Traffic Flow Forecasting with Maintenance Downtime via Multi-Channel
Attention-Based Spatio-Temporal Graph Convolutional Networks [4.318655493189584]
We propose a model to predict traffic speed under the impact of construction work.
The model is based on the powerful attention-based,temporal graph convolution architecture but utilizes various channels to integrate different sources of information.
The model is evaluated on two benchmark datasets and a novel dataset we have collected over the bustling roadway's corner in Northern Virginia.
arXiv Detail & Related papers (2021-10-04T16:07:37Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - Spatial-Temporal Tensor Graph Convolutional Network for Traffic
Prediction [46.762437988118386]
We propose a factorized Spatial-Temporal Graph Convolutional Network to deal with traffic speed prediction.
To reduce the computational burden, we take Tucker tensor decomposition and derive factorized a tensor convolution.
Experiments on two real-world traffic speed datasets demonstrate our method is more effective than those traditional traffic prediction methods.
arXiv Detail & Related papers (2021-03-10T15:28:07Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
arterial traffic prediction plays a crucial role in the development of modern intelligent transportation systems.
Many existing studies on arterial traffic prediction only consider temporal measurements of flow and occupancy from loop sensors and neglect the rich spatial relationships between upstream and downstream detectors.
We fill this gap by enhancing a deep learning approach, Diffusion Convolutional Recurrent Neural Network, with spatial information generated from signal timing plans at targeted intersections.
arXiv Detail & Related papers (2020-12-25T01:40:29Z) - Spatio-Temporal Point Processes with Attention for Traffic Congestion
Event Modeling [28.994426283738363]
We present a novel framework for modeling traffic congestion events over road networks.
Using multi-modal data by combining count data from traffic sensors with police reports that report traffic incidents, we aim to capture two types of triggering effect for congestion events.
Current traffic congestion at one location may cause future congestion over the road network, and traffic incidents may cause spread traffic congestion.
arXiv Detail & Related papers (2020-05-15T04:22:18Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.