論文の概要: Navigating the Future of Federated Recommendation Systems with Foundation Models
- arxiv url: http://arxiv.org/abs/2406.00004v3
- Date: Fri, 13 Dec 2024 06:41:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:01:12.739233
- Title: Navigating the Future of Federated Recommendation Systems with Foundation Models
- Title(参考訳): ファウンデーションモデルによるフェデレーションレコメンデーションシステムの今後
- Authors: Zhiwei Li, Guodong Long, Chunxu Zhang, Honglei Zhang, Jing Jiang, Chengqi Zhang,
- Abstract要約: 近年,FRS(Federated Recommendation Systems)として知られるFLとレコメンデーションシステムの統合が注目されている。
しかし、FLのプライバシー要件とRSの典型的なデータ空間の問題により、FRSはデータの不均一性や不足といった固有の制限に直面している。
本研究では、ファンデーションモデル(FM)を用いたFRSの総合的なレビューを行う。
- 参考スコア(独自算出の注目度): 36.85043146335166
- License:
- Abstract: In recent years, the integration of federated learning (FL) and recommendation systems (RS), known as Federated Recommendation Systems (FRS), has attracted attention for preserving user privacy by keeping private data on client devices. However, FRS faces inherent limitations such as data heterogeneity and scarcity, due to the privacy requirements of FL and the typical data sparsity issues of RSs. Models like ChatGPT are empowered by the concept of transfer learning and self-supervised learning, so they can be easily applied to the downstream tasks after fine-tuning or prompting. These models, so-called Foundation Models (FM), fouce on understanding the human's intent and perform following their designed roles in the specific tasks, which are widely recognized for producing high-quality content in the image and language domains. Thus, the achievements of FMs inspire the design of FRS and suggest a promising research direction: integrating foundation models to address the above limitations. In this study, we conduct a comprehensive review of FRSs with FMs. Specifically, we: 1) summarise the common approaches of current FRSs and FMs; 2) review the challenges posed by FRSs and FMs; 3) discuss potential future research directions; and 4) introduce some common benchmarks and evaluation metrics in the FRS field. We hope that this position paper provides the necessary background and guidance to explore this interesting and emerging topic.
- Abstract(参考訳): 近年,FRS(Federated Recommendation Systems)として知られるFLとレコメンデーションシステムの統合が注目されている。
しかし、FLのプライバシー要件とRSの典型的なデータ空間の問題により、FRSはデータの不均一性や不足といった固有の制限に直面している。
ChatGPTのようなモデルは、転送学習と自己教師型学習の概念によって強化されているため、微調整やプロンプト後に下流のタスクに容易に適用することができる。
これらのモデル、いわゆるファンデーションモデル(FM)は、人間の意図を理解し、特定のタスクにおいてその設計された役割を遂行することを目的としており、画像や言語領域で高品質なコンテンツを生み出すことが広く認識されている。
したがって、FMの成果はFRSの設計を刺激し、この制限に対処するための基礎モデルの統合という、有望な研究方向性を示唆している。
本研究では,FMを用いたFRSの総合的な検討を行う。
具体的には
1) 現在のFRSとFMの共通アプローチを要約すること。
2) FRS 及び FM による課題の見直し
3 今後の研究の方向性を議論すること、及び
4) FRS分野における一般的なベンチマークと評価指標を導入する。
このポジションペーパーが、この興味深く新しいトピックを探求するために必要な背景とガイダンスを提供することを期待しています。
関連論文リスト
- Foundation Models for Remote Sensing and Earth Observation: A Survey [101.77425018347557]
本調査は、リモートセンシング基礎モデル(RSFM)の新しい分野を体系的にレビューする。
モチベーションと背景の概要から始まり、続いて基本概念が導入された。
我々はこれらのモデルを公開データセットと比較し、既存の課題について議論し、今後の研究方向性を提案する。
論文 参考訳(メタデータ) (2024-10-22T01:08:21Z) - Advances and Open Challenges in Federated Foundation Models [34.37509703688661]
ファウンデーションモデル(FM)とフェデレートラーニング(FL)の統合は、人工知能(AI)における変革的パラダイムを提示する
本稿では,フェデレーション・ファンデーション・モデル(FedFM)の新興分野に関する包括的調査を行う。
論文 参考訳(メタデータ) (2024-04-23T09:44:58Z) - A Survey on Efficient Federated Learning Methods for Foundation Model Training [62.473245910234304]
フェデレーテッド・ラーニング(FL)は、多数のクライアントにわたるプライバシー保護協調トレーニングを促進するための確立した技術となっている。
Foundation Models (FM)の後、多くのディープラーニングアプリケーションでは現実が異なる。
FLアプリケーションに対するパラメータ効率細調整(PEFT)の利点と欠点について論じる。
論文 参考訳(メタデータ) (2024-01-09T10:22:23Z) - A Survey on Federated Unlearning: Challenges, Methods, and Future Directions [21.90319100485268]
近年、忘れられる権利(RTBF)の概念は、デジタル信頼とAI安全のためのデータプライバシの重要な側面となっている。
マシン・アンラーニング(MU)は、MLモデルによって識別可能な情報を選択的に排除できる、かなりの注目を集めている。
FUは、フェデレートされた学習環境におけるデータ消去の課題に直面している。
論文 参考訳(メタデータ) (2023-10-31T13:32:00Z) - A Survey of Federated Unlearning: A Taxonomy, Challenges and Future
Directions [71.16718184611673]
プライバシ保護のためのフェデレートラーニング(FL)の進化により、忘れられる権利を実装する必要性が高まっている。
選択的な忘れ方の実装は、その分散した性質のため、FLでは特に困難である。
Federated Unlearning(FU)は、データプライバシの必要性の増加に対応する戦略的ソリューションとして登場した。
論文 参考訳(メタデータ) (2023-10-30T01:34:33Z) - Learn From Model Beyond Fine-Tuning: A Survey [78.80920533793595]
Learn From Model (LFM) は、モデルインターフェースに基づいた基礎モデル(FM)の研究、修正、設計に焦点を当てている。
LFM技術の研究は、モデルチューニング、モデル蒸留、モデル再利用、メタラーニング、モデル編集の5つの分野に大別できる。
本稿では, LFM の観点から, FM に基づく現在の手法を概観する。
論文 参考訳(メタデータ) (2023-10-12T10:20:36Z) - The Role of Federated Learning in a Wireless World with Foundation Models [59.8129893837421]
ファンデーションモデル(FM)は汎用人工知能(AI)モデルである。
現在、FMと連邦学習(FL)の相互作用の探索はまだ初期段階にある。
本稿では、FMが無線ネットワークよりもFLに適した範囲について検討し、その研究課題と機会について概観する。
論文 参考訳(メタデータ) (2023-10-06T04:13:10Z) - When Foundation Model Meets Federated Learning: Motivations, Challenges,
and Future Directions [47.00147534252281]
ファンデーションモデル(FM)とフェデレートラーニング(FL)の交差は相互に利益をもたらす。
FLは、FMデータの可用性を拡張し、計算共有、トレーニングプロセスの分散、FL参加者の負担軽減を可能にする。
一方、FMは、その巨大さ、事前訓練された知識、および例外的な性能により、FLの堅牢な出発点として機能する。
論文 参考訳(メタデータ) (2023-06-27T15:15:55Z) - Federated Foundation Models: Privacy-Preserving and Collaborative Learning for Large Models [8.184714897613166]
我々は、FMとFederated Learning(FL)の利点を組み合わせたFFM(Federated Foundation Models)パラダイムを提案する。
我々は,FMの寿命にFLを組み込むことの潜在的なメリットと課題について論じ,事前学習,微調整,応用について論じる。
エッジでの計算能力の増大は、データソースに近い新たに生成されたプライベートデータを用いてFMを最適化する可能性を解き放つ可能性があるため、FFMにおける連続的・長期学習の可能性を探る。
論文 参考訳(メタデータ) (2023-05-19T03:51:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。