EMERGE: Enhancing Multimodal Electronic Health Records Predictive Modeling with Retrieval-Augmented Generation
- URL: http://arxiv.org/abs/2406.00036v2
- Date: Wed, 26 Feb 2025 13:18:09 GMT
- Title: EMERGE: Enhancing Multimodal Electronic Health Records Predictive Modeling with Retrieval-Augmented Generation
- Authors: Yinghao Zhu, Changyu Ren, Zixiang Wang, Xiaochen Zheng, Shiyun Xie, Junlan Feng, Xi Zhu, Zhoujun Li, Liantao Ma, Chengwei Pan,
- Abstract summary: EMERGE is a Retrieval-Augmented Generation (RAG) driven framework to enhance multimodal EHR predictive modeling.<n>We extract entities from time-series data and clinical notes by prompting Large Language Models (LLMs) and align them with professional PrimeKG.<n>The extracted knowledge is then used to generate task-relevant summaries of patients' health statuses.
- Score: 22.94521527609479
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of multimodal Electronic Health Records (EHR) data has significantly advanced clinical predictive capabilities. Existing models, which utilize clinical notes and multivariate time-series EHR data, often fall short of incorporating the necessary medical context for accurate clinical tasks, while previous approaches with knowledge graphs (KGs) primarily focus on structured knowledge extraction. In response, we propose EMERGE, a Retrieval-Augmented Generation (RAG) driven framework to enhance multimodal EHR predictive modeling. We extract entities from both time-series data and clinical notes by prompting Large Language Models (LLMs) and align them with professional PrimeKG, ensuring consistency. In addition to triplet relationships, we incorporate entities' definitions and descriptions for richer semantics. The extracted knowledge is then used to generate task-relevant summaries of patients' health statuses. Finally, we fuse the summary with other modalities using an adaptive multimodal fusion network with cross-attention. Extensive experiments on the MIMIC-III and MIMIC-IV datasets' in-hospital mortality and 30-day readmission tasks demonstrate the superior performance of the EMERGE framework over baseline models. Comprehensive ablation studies and analysis highlight the efficacy of each designed module and robustness to data sparsity. EMERGE contributes to refining the utilization of multimodal EHR data in healthcare, bridging the gap with nuanced medical contexts essential for informed clinical predictions. We have publicly released the code at https://github.com/yhzhu99/EMERGE.
Related papers
- Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
Cancer prognosis is a critical task that involves predicting patient outcomes and survival rates.
Previous studies have integrated diverse data modalities, such as clinical notes, medical images, and genomic data, leveraging their complementary information.
Existing approaches face two major limitations. First, they struggle to incorporate newly arrived data with varying distributions into training, such as patient records from different hospitals.
Second, most multimodal integration methods rely on simplistic concatenation or task-specific pipelines, which fail to capture the complex interdependencies across modalities.
arXiv Detail & Related papers (2025-01-30T06:49:57Z) - HC-LLM: Historical-Constrained Large Language Models for Radiology Report Generation [89.3260120072177]
We propose a novel Historical-Constrained Large Language Models (HC-LLM) framework for Radiology report generation.
Our approach extracts both time-shared and time-specific features from longitudinal chest X-rays and diagnostic reports to capture disease progression.
Notably, our approach performs well even without historical data during testing and can be easily adapted to other multimodal large models.
arXiv Detail & Related papers (2024-12-15T06:04:16Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.
Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - Multimodal Fusion of EHR in Structures and Semantics: Integrating Clinical Records and Notes with Hypergraph and LLM [39.25272553560425]
We propose a new framework called MINGLE, which integrates both structures and semantics in EHR effectively.
Our framework uses a two-level infusion strategy to combine medical concept semantics and clinical note semantics into hypergraph neural networks.
Experiment results on two EHR datasets, the public MIMIC-III and private CRADLE, show that MINGLE can effectively improve predictive performance by 11.83% relatively.
arXiv Detail & Related papers (2024-02-19T23:48:40Z) - REALM: RAG-Driven Enhancement of Multimodal Electronic Health Records
Analysis via Large Language Models [19.62552013839689]
Existing models often lack the medical context relevent to clinical tasks, prompting the incorporation of external knowledge.
We propose REALM, a Retrieval-Augmented Generation (RAG) driven framework to enhance multimodal EHR representations.
Our experiments on MIMIC-III mortality and readmission tasks showcase the superior performance of our REALM framework over baselines.
arXiv Detail & Related papers (2024-02-10T18:27:28Z) - Multimodal Interpretable Data-Driven Models for Early Prediction of
Antimicrobial Multidrug Resistance Using Multivariate Time-Series [6.804748007823268]
We present an approach built on a collection of interpretable multimodal data-driven models that may anticipate and understand the emergence of antimicrobial multidrug resistance (AMR) germs in the intensive care unit (ICU) of the University Hospital of Fuenlabrada (Madrid, Spain)
The profile and initial health status of the patient are modeled using static variables, while the evolution of the patient's health status during the ICU stay is modeled using several MTS, including mechanical ventilation and antibiotics intake.
arXiv Detail & Related papers (2024-02-09T10:16:58Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics.
Deep learning has demonstrated its superiority in various applications, including healthcare.
arXiv Detail & Related papers (2024-02-02T00:31:01Z) - Next Visit Diagnosis Prediction via Medical Code-Centric Multimodal Contrastive EHR Modelling with Hierarchical Regularisation [0.0]
We propose NECHO, a novel medical code-centric multimodal contrastive EHR learning framework with hierarchical regularisation.
First, we integrate multifaceted information encompassing medical codes, demographics, and clinical notes using a tailored network design.
We also regularise modality-specific encoders using a parental level information in medical ontology to learn hierarchical structure of EHR data.
arXiv Detail & Related papers (2024-01-22T01:58:32Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
We propose an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data.
We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions.
Our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.
arXiv Detail & Related papers (2023-12-29T14:28:04Z) - INSPECT: A Multimodal Dataset for Pulmonary Embolism Diagnosis and
Prognosis [19.32686665459374]
We introduce INSPECT, which contains de-identified longitudinal records from a large cohort of patients at risk for pulmonary embolism (PE)
INSPECT contains data from 19,402 patients, including CT images, radiology report impression sections, and structured electronic health record (EHR) data (i.e. demographics, diagnoses, procedures, vitals, and medications)
arXiv Detail & Related papers (2023-11-17T07:28:16Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - Time Associated Meta Learning for Clinical Prediction [78.99422473394029]
We propose a novel time associated meta learning (TAML) method to make effective predictions at multiple future time points.
To address the sparsity problem after task splitting, TAML employs a temporal information sharing strategy to augment the number of positive samples.
We demonstrate the effectiveness of TAML on multiple clinical datasets, where it consistently outperforms a range of strong baselines.
arXiv Detail & Related papers (2023-03-05T03:54:54Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
We propose an end-to-end robust Transformer-based solution, Mutual Integration of patient journey and Medical Ontology (MIMO) for healthcare representation learning and predictive analytics.
arXiv Detail & Related papers (2021-07-20T07:04:52Z) - MeSIN: Multilevel Selective and Interactive Network for Medication
Recommendation [9.173903754083927]
We propose a multilevel selective and interactive network (MeSIN) for medication recommendation.
First, an attentional selective module (ASM) is applied to assign flexible attention scores to different medical codes embeddings.
Second, we incorporate a novel interactive long-short term memory network (InLSTM) to reinforce the interactions of multilevel medical sequences in EHR data.
arXiv Detail & Related papers (2021-04-22T12:59:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.