論文の概要: STAT: Shrinking Transformers After Training
- arxiv url: http://arxiv.org/abs/2406.00061v1
- Date: Wed, 29 May 2024 22:59:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 08:43:16.557405
- Title: STAT: Shrinking Transformers After Training
- Title(参考訳): STAT: トレーニング後の変圧器の収縮
- Authors: Megan Flynn, Alexander Wang, Dean Edward Alvarez, Christopher De Sa, Anil Damle,
- Abstract要約: 微調整なしで変圧器モデルを作成するための簡単なアルゴリズムSTATを提案する。
STATは、次の層の重みを補正して精度を保ちながら、注意頭とニューロンの両方をネットワークから排除する。
われわれのアルゴリズムは、BERTを圧縮するのに数分を要し、単一のGPUを用いて7Bパラメータを持つモデルを圧縮するのに3時間もかからない。
- 参考スコア(独自算出の注目度): 72.0726371426711
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present STAT: a simple algorithm to prune transformer models without any fine-tuning. STAT eliminates both attention heads and neurons from the network, while preserving accuracy by calculating a correction to the weights of the next layer. Each layer block in the network is compressed using a series of principled matrix factorizations that preserve the network structure. Our entire algorithm takes minutes to compress BERT, and less than three hours to compress models with 7B parameters using a single GPU. Using only several hundred data examples, STAT preserves the output of the network and improves upon existing gradient-free pruning methods. It is even competitive with methods that include significant fine-tuning. We demonstrate our method on both encoder and decoder architectures, including BERT, DistilBERT, and Llama-2 using benchmarks such as GLUE, Squad, WikiText2.
- Abstract(参考訳): 本稿では,変換器モデルに微調整を伴わない簡単なアルゴリズムSTATを提案する。
STATは、次の層の重みを補正して精度を保ちながら、注意頭とニューロンの両方をネットワークから排除する。
ネットワーク内の各層ブロックは、ネットワーク構造を保存する一連の基本行列分解を用いて圧縮される。
われわれのアルゴリズムは、BERTを圧縮するのに数分を要し、単一のGPUを用いて7Bパラメータを持つモデルを圧縮するのに3時間もかからない。
わずか数百のデータ例を使用して、STATはネットワークの出力を保存し、既存の勾配のないプルーニング法を改善する。
優れた微調整を含む手法とさえ競合する。
本稿では, GLUE, Squad, WikiText2 などのベンチマークを用いて, BERT, DistilBERT, Llama-2 などのエンコーダアーキテクチャとデコーダアーキテクチャの両方に適用した。
関連論文リスト
- MST-compression: Compressing and Accelerating Binary Neural Networks
with Minimum Spanning Tree [21.15961593182111]
エッジコンピューティングデバイスにおける計算コストとメモリストレージを削減するために、バイナリニューラルネットワーク(BNN)が広く採用されている。
しかしながら、ニューラルネットワークが精度を向上し、実用的な要件を満たすためにより広く、より深くなるにつれて、計算の負担はバイナリバージョンにおいても大きな課題である。
本稿では,BNNの圧縮と高速化を学習する,最小スパンニングツリー(MST)圧縮法を提案する。
論文 参考訳(メタデータ) (2023-08-26T02:42:12Z) - Neural Network Compression using Binarization and Few Full-Precision
Weights [7.206962876422061]
自動Prune Binarization (APB) は量子化とプルーニングを組み合わせた新しい圧縮技術である。
APBは、数個の完全精度重みを使ってバイナリネットワークの表現能力を向上する。
APBは最先端の方法よりも精度とメモリのトレードオフが優れている。
論文 参考訳(メタデータ) (2023-06-15T08:52:00Z) - Block-wise Bit-Compression of Transformer-based Models [9.77519365079468]
再学習を伴わない変圧器のブロックワイドビット圧縮法であるBBCTを提案する。
GLUE(General Language Understanding Evaluation)のベンチマークテストの結果,ほとんどのタスクにおいて,BBCTは1%未満の精度低下を達成できることがわかった。
論文 参考訳(メタデータ) (2023-03-16T09:53:57Z) - Monarch: Expressive Structured Matrices for Efficient and Accurate
Training [64.6871423399431]
大規模なニューラルネットワークは多くのドメインで優れているが、トレーニングや微調整は高価である。
計算やメモリ要件を減らすための一般的なアプローチは、重み付け行列を構造化行列に置き換えることである。
ハードウェア効率のよい行列(Monarch)のクラスを提案する。
論文 参考訳(メタデータ) (2022-04-01T17:37:29Z) - A Fast Post-Training Pruning Framework for Transformers [74.59556951906468]
プルーニングは、大きなTransformerモデルの巨大な推論コストを削減する効果的な方法である。
モデルプルーニングの以前の作業では、モデルの再トレーニングが必要だった。
本稿では,再学習を必要としないトランスフォーマーのための高速な訓練後プルーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-29T07:41:11Z) - Rescoring Sequence-to-Sequence Models for Text Line Recognition with
CTC-Prefixes [0.0]
我々は,S2Sデコード中にCTC-Prefix-Scoreを使用することを提案する。
ビームサーチ中、CTC信頼行列に従って無効となるパスがペナル化される。
IAM, Rimes, StAZHの3つのHTRデータセット上で, この設定を評価する。
論文 参考訳(メタデータ) (2021-10-12T11:40:05Z) - An Information Theory-inspired Strategy for Automatic Network Pruning [88.51235160841377]
深層畳み込みニューラルネットワークは、リソース制約のあるデバイスで圧縮されることがよく知られている。
既存のネットワークプルーニング手法の多くは、人的努力と禁忌な計算資源を必要とする。
本稿では,自動モデル圧縮のための情報理論に基づく戦略を提案する。
論文 参考訳(メタデータ) (2021-08-19T07:03:22Z) - Layer-Wise Data-Free CNN Compression [49.73757297936685]
本稿では,事前学習ネットワークのみを用いてレイヤワイズトレーニングデータを生成する方法を示す。
本稿では,量子化とプルーニングを用いた層間圧縮の結果について述べる。
論文 参考訳(メタデータ) (2020-11-18T03:00:05Z) - OctSqueeze: Octree-Structured Entropy Model for LiDAR Compression [77.8842824702423]
本稿では,LiDAR点雲のメモリフットプリントを削減するための新しいディープ圧縮アルゴリズムを提案する。
本手法は,メモリフットプリントを低減するために,点間の間隔と構造的冗長性を利用する。
我々のアルゴリズムは、自動運転車などのアプリケーションにおいて、LiDARポイントのオンボードおよびオフボードストレージを減らすために使用できる。
論文 参考訳(メタデータ) (2020-05-14T17:48:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。