Query2CAD: Generating CAD models using natural language queries
- URL: http://arxiv.org/abs/2406.00144v1
- Date: Fri, 31 May 2024 19:17:00 GMT
- Title: Query2CAD: Generating CAD models using natural language queries
- Authors: Akshay Badagabettu, Sai Sravan Yarlagadda, Amir Barati Farimani,
- Abstract summary: We introduce Query2CAD, a novel framework to generate CAD designs.
The framework uses a large language model to generate executable CAD macros.
Query2CAD operates without supervised data or additional training, using the LLM as both a generator and a refiner.
- Score: 6.349503549199403
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computer Aided Design (CAD) engineers typically do not achieve their best prototypes in a single attempt. Instead, they iterate and refine their designs to achieve an optimal solution through multiple revisions. This traditional approach, though effective, is time-consuming and relies heavily on the expertise of skilled engineers. To address these challenges, we introduce Query2CAD, a novel framework to generate CAD designs. The framework uses a large language model to generate executable CAD macros. Additionally, Query2CAD refines the generation of the CAD model with the help of its self-refinement loops. Query2CAD operates without supervised data or additional training, using the LLM as both a generator and a refiner. The refiner leverages feedback generated by the BLIP2 model, and to address false negatives, we have incorporated human-in-the-loop feedback into our system. Additionally, we have developed a dataset that encompasses most operations used in CAD model designing and have evaluated our framework using this dataset. Our findings reveal that when we used GPT-4 Turbo as our language model, the architecture achieved a success rate of 53.6\% on the first attempt. With subsequent refinements, the success rate increased by 23.1\%. In particular, the most significant improvement in the success rate was observed with the first iteration of the refinement. With subsequent refinements, the accuracy of the correct designs did not improve significantly. We have open-sourced our data, model, and code (github.com/akshay140601/Query2CAD).
Related papers
- CAD-MLLM: Unifying Multimodality-Conditioned CAD Generation With MLLM [39.113795259823476]
We introduce the CAD-MLLM, the first system capable of generating parametric CAD models conditioned on the multimodal input.
We use advanced large language models (LLMs) to align the feature space across diverse multi-modalities data and CAD models' vectorized representations.
Our resulting dataset, named Omni-CAD, is the first multimodal CAD dataset that contains textual description, multi-view images, points, and command sequence for each CAD model.
arXiv Detail & Related papers (2024-11-07T18:31:08Z) - OpenECAD: An Efficient Visual Language Model for Editable 3D-CAD Design [1.481550828146527]
We fine-tuned pre-trained models to create OpenECAD models (0.55B, 0.89B, 2.4B and 3.1B)
OpenECAD models can process images of 3D designs as input and generate highly structured 2D sketches and 3D construction commands.
These outputs can be directly used with existing CAD tools' APIs to generate project files.
arXiv Detail & Related papers (2024-06-14T10:47:52Z) - Self-supervised Graph Neural Network for Mechanical CAD Retrieval [29.321027284348272]
GC-CAD is a self-supervised contrastive graph neural network-based method for mechanical CAD retrieval.
The proposed method achieves significant accuracy improvements and up to 100 times efficiency improvement over the baseline methods.
arXiv Detail & Related papers (2024-06-13T06:56:49Z) - PS-CAD: Local Geometry Guidance via Prompting and Selection for CAD Reconstruction [86.726941702182]
We introduce geometric guidance into the reconstruction network PS-CAD.
We provide the geometry of surfaces where the current reconstruction differs from the complete model as a point cloud.
Second, we use geometric analysis to extract a set of planar prompts, that correspond to candidate surfaces.
arXiv Detail & Related papers (2024-05-24T03:43:55Z) - ContrastCAD: Contrastive Learning-based Representation Learning for Computer-Aided Design Models [0.7373617024876725]
We propose a contrastive learning-based approach to learning CAD models, named ContrastCAD.
ContrastCAD effectively captures semantic information within the construction sequences of the CAD model.
We also propose a new CAD data augmentation method, called a Random Replace and Extrude (RRE) method, to enhance the learning performance of the model.
arXiv Detail & Related papers (2024-04-02T05:30:39Z) - Geometric Deep Learning for Computer-Aided Design: A Survey [85.79012726689511]
This survey offers a comprehensive overview of learning-based methods in computer-aided design.
It includes similarity analysis and retrieval, 2D and 3D CAD model synthesis, and CAD generation from point clouds.
It provides a complete list of benchmark datasets and their characteristics, along with open-source codes that have propelled research in this domain.
arXiv Detail & Related papers (2024-02-27T17:11:35Z) - P2CADNet: An End-to-End Reconstruction Network for Parametric 3D CAD
Model from Point Clouds [10.041481396324517]
This paper proposes an end-to-end network to reconstruct featured CAD model from point cloud (P2CADNet)
We evaluate P2CADNet on the public dataset, and the experimental results show that P2CADNet has excellent reconstruction quality and accuracy.
arXiv Detail & Related papers (2023-10-04T08:00:05Z) - AutoCAD: Automatically Generating Counterfactuals for Mitigating
Shortcut Learning [70.70393006697383]
We present AutoCAD, a fully automatic and task-agnostic CAD generation framework.
In this paper, we present AutoCAD, a fully automatic and task-agnostic CAD generation framework.
arXiv Detail & Related papers (2022-11-29T13:39:53Z) - Efficient Automatic Machine Learning via Design Graphs [72.85976749396745]
We propose FALCON, an efficient sample-based method to search for the optimal model design.
FALCON features 1) a task-agnostic module, which performs message passing on the design graph via a Graph Neural Network (GNN), and 2) a task-specific module, which conducts label propagation of the known model performance information.
We empirically show that FALCON can efficiently obtain the well-performing designs for each task using only 30 explored nodes.
arXiv Detail & Related papers (2022-10-21T21:25:59Z) - Using Machine Learning to Predict Engineering Technology Students'
Success with Computer Aided Design [50.591267188664666]
We show how data combined with machine learning techniques can predict how well a particular student will perform in a design task.
We found that our models using early design sequence actions are particularly valuable for prediction.
Further improvements to these models could lead to earlier predictions and thus provide students feedback sooner to enhance their learning.
arXiv Detail & Related papers (2021-08-12T20:24:54Z) - Fusion 360 Gallery: A Dataset and Environment for Programmatic CAD
Construction from Human Design Sequences [43.57844212541765]
We present the Fusion 360 Gallery, consisting of a simple language with just the sketch and extrude modeling operations.
We also present an interactive environment called the Fusion 360 Gym, which exposes the sequential construction of a CAD program as a Markov decision process.
arXiv Detail & Related papers (2020-10-05T23:18:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.