Towards Rationality in Language and Multimodal Agents: A Survey
- URL: http://arxiv.org/abs/2406.00252v6
- Date: Sun, 16 Feb 2025 05:30:30 GMT
- Title: Towards Rationality in Language and Multimodal Agents: A Survey
- Authors: Bowen Jiang, Yangxinyu Xie, Xiaomeng Wang, Yuan Yuan, Zhuoqun Hao, Xinyi Bai, Weijie J. Su, Camillo J. Taylor, Tanwi Mallick,
- Abstract summary: This work discusses how to build more rational language and multimodal agents.
Rationality is quality of being guided by reason, characterized by decision-making that aligns with evidence and logical principles.
- Score: 23.451887560567602
- License:
- Abstract: This work discusses how to build more rational language and multimodal agents and what criteria define rationality in intelligent systems. Rationality is the quality of being guided by reason, characterized by decision-making that aligns with evidence and logical principles. It plays a crucial role in reliable problem-solving by ensuring well-grounded and consistent solutions. Despite their progress, large language models (LLMs) often fall short of rationality due to their bounded knowledge space and inconsistent outputs. In response, recent efforts have shifted toward developing multimodal and multi-agent systems, as well as integrating modules like external tools, programming codes, symbolic reasoners, utility function, and conformal risk controls rather than relying solely on a single LLM for decision-making. This paper surveys state-of-the-art advancements in language and multimodal agents, assesses their role in enhancing rationality, and outlines open challenges and future research directions. We maintain an open repository at https://github.com/bowen-upenn/Agent_Rationality.
Related papers
- Agentic Reasoning: Reasoning LLMs with Tools for the Deep Research [7.4327380079414676]
We introduce Agentic Reasoning, a framework that enhances large language model (LLM) reasoning by integrating external tool-using agents.
Our framework introduces the Mind Map agent, which constructs a structured knowledge graph to track logical relationships.
Evaluations on PhD-level scientific reasoning (GPQA) and domain-specific deep research tasks demonstrate that our approach significantly outperforms existing models.
arXiv Detail & Related papers (2025-02-07T04:08:46Z) - Multi-step Inference over Unstructured Data [2.169874047093392]
High-stakes decision-making tasks in fields such as medical, legal and finance require a level of precision, comprehensiveness, and logical consistency.
We have developed a neuro-symbolic AI platform to tackle these problems.
The platform integrates fine-tuned LLMs for knowledge extraction and alignment with a robust symbolic reasoning engine.
arXiv Detail & Related papers (2024-06-26T00:00:45Z) - Recent Advances in Hate Speech Moderation: Multimodality and the Role of Large Models [52.24001776263608]
This comprehensive survey delves into the recent strides in HS moderation.
We highlight the burgeoning role of large language models (LLMs) and large multimodal models (LMMs)
We identify existing gaps in research, particularly in the context of underrepresented languages and cultures.
arXiv Detail & Related papers (2024-01-30T03:51:44Z) - Exploring Large Language Model based Intelligent Agents: Definitions,
Methods, and Prospects [32.91556128291915]
This paper surveys current research to provide an in-depth overview of intelligent agents within single and multi-agent systems.
It covers their definitions, research frameworks, and foundational components such as their composition, cognitive and planning methods, tool utilization, and responses to environmental feedback.
We conclude by envisioning prospects for LLM-based agents, considering the evolving landscape of AI and natural language processing.
arXiv Detail & Related papers (2024-01-07T09:08:24Z) - Igniting Language Intelligence: The Hitchhiker's Guide From
Chain-of-Thought Reasoning to Language Agents [80.5213198675411]
Large language models (LLMs) have dramatically enhanced the field of language intelligence.
LLMs leverage the intriguing chain-of-thought (CoT) reasoning techniques, obliging them to formulate intermediate steps en route to deriving an answer.
Recent research endeavors have extended CoT reasoning methodologies to nurture the development of autonomous language agents.
arXiv Detail & Related papers (2023-11-20T14:30:55Z) - Characterizing Large Language Models as Rationalizers of
Knowledge-intensive Tasks [6.51301154858045]
Large language models (LLMs) are proficient at generating fluent text with minimal task-specific supervision.
We consider the task of generating knowledge-guided rationalization in natural language by using expert-written examples in a few-shot manner.
Surprisingly, crowd-workers preferred knowledge-grounded rationales over crowdsourced rationalizations, citing their factuality, sufficiency, and comprehensive refutations.
arXiv Detail & Related papers (2023-11-09T01:04:44Z) - Large Language Models for Information Retrieval: A Survey [58.30439850203101]
Information retrieval has evolved from term-based methods to its integration with advanced neural models.
Recent research has sought to leverage large language models (LLMs) to improve IR systems.
We delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers.
arXiv Detail & Related papers (2023-08-14T12:47:22Z) - Brain in a Vat: On Missing Pieces Towards Artificial General
Intelligence in Large Language Models [83.63242931107638]
We propose four characteristics of generally intelligent agents.
We argue that active engagement with objects in the real world delivers more robust signals for forming conceptual representations.
We conclude by outlining promising future research directions in the field of artificial general intelligence.
arXiv Detail & Related papers (2023-07-07T13:58:16Z) - Rationale-Augmented Ensembles in Language Models [53.45015291520658]
We reconsider rationale-augmented prompting for few-shot in-context learning.
We identify rationale sampling in the output space as the key component to robustly improve performance.
We demonstrate that rationale-augmented ensembles achieve more accurate and interpretable results than existing prompting approaches.
arXiv Detail & Related papers (2022-07-02T06:20:57Z) - Automated Machine Learning, Bounded Rationality, and Rational
Metareasoning [62.997667081978825]
We will look at automated machine learning (AutoML) and related problems from the perspective of bounded rationality.
Taking actions under bounded resources requires an agent to reflect on how to use these resources in an optimal way.
arXiv Detail & Related papers (2021-09-10T09:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.