論文の概要: Are Large Vision Language Models up to the Challenge of Chart Comprehension and Reasoning? An Extensive Investigation into the Capabilities and Limitations of LVLMs
- arxiv url: http://arxiv.org/abs/2406.00257v2
- Date: Fri, 04 Oct 2024 01:03:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-07 18:20:13.322449
- Title: Are Large Vision Language Models up to the Challenge of Chart Comprehension and Reasoning? An Extensive Investigation into the Capabilities and Limitations of LVLMs
- Title(参考訳): 大規模視覚言語モデルはチャート理解と推論の課題に到達しているか? : LVLMの能力と限界に関する広範囲にわたる調査
- Authors: Mohammed Saidul Islam, Raian Rahman, Ahmed Masry, Md Tahmid Rahman Laskar, Mir Tafseer Nayeem, Enamul Hoque,
- Abstract要約: 自然言語は、バーやラインチャートのようなデータ視覚化のためのコミュニケーションの強力な補完的モダリティである。
近年,チャート質問応答,チャート要約,ファクトチェックなど,さまざまなダウンストリームタスクが導入されている。
これらのタスクはユニークな課題であり、視覚言語推論とグラフデータテーブル、ビジュアルエンコーディング、自然言語プロンプトの微妙な理解の両方を要求する。
本稿では,最近開発された大規模視覚言語モデル(LVLM)の総合的な評価を,チャート理解と推論のタスクに対して行った。
- 参考スコア(独自算出の注目度): 11.19928977117624
- License:
- Abstract: Natural language is a powerful complementary modality of communication for data visualizations, such as bar and line charts. To facilitate chart-based reasoning using natural language, various downstream tasks have been introduced recently such as chart question answering, chart summarization, and fact-checking with charts. These tasks pose a unique challenge, demanding both vision-language reasoning and a nuanced understanding of chart data tables, visual encodings, and natural language prompts. Despite the recent success of Large Language Models (LLMs) across diverse NLP tasks, their abilities and limitations in the realm of data visualization remain under-explored, possibly due to their lack of multi-modal capabilities. To bridge the gap, this paper presents the first comprehensive evaluation of the recently developed large vision language models (LVLMs) for chart understanding and reasoning tasks. Our evaluation includes a comprehensive assessment of LVLMs, including GPT-4V and Gemini, across four major chart reasoning tasks. Furthermore, we perform a qualitative evaluation of LVLMs' performance on a diverse range of charts, aiming to provide a thorough analysis of their strengths and weaknesses. Our findings reveal that LVLMs demonstrate impressive abilities in generating fluent texts covering high-level data insights while also encountering common problems like hallucinations, factual errors, and data bias. We highlight the key strengths and limitations of chart comprehension tasks, offering insights for future research.
- Abstract(参考訳): 自然言語は、バーやラインチャートのようなデータ視覚化のためのコミュニケーションの強力な補完的モダリティである。
自然言語を用いたチャートベースの推論を容易にするため,近年,チャート質問応答,チャート要約,ファクトチェックなど,さまざまなダウンストリームタスクが導入されている。
これらのタスクはユニークな課題であり、視覚言語推論とグラフデータテーブル、ビジュアルエンコーディング、自然言語プロンプトの微妙な理解の両方を要求する。
さまざまなNLPタスクにわたるLarge Language Models (LLMs) の成功にもかかわらず、データ視覚化の領域におけるそれらの能力と限界は、おそらくはマルチモーダル能力の欠如のために、未調査のままである。
本稿では,このギャップを埋めるために,最近開発された大規模視覚言語モデル(LVLM)の総合的な評価を行った。
GPT-4VやGeminiを含むLVLMの総合的な評価を4つの主要なチャート推論タスクで行う。
さらに,様々なチャート上でLVLMの性能を定性的に評価し,その強度と弱点を徹底的に解析することを目的とした。
以上の結果から,LVLMは高レベルのデータインサイトをカバーする流動的なテキストを生成する上で,幻覚,事実誤差,データバイアスといった一般的な問題に直面していることがわかった。
我々は、チャート理解タスクの重要な強みと限界を強調し、将来の研究に対する洞察を提供する。
関連論文リスト
- Revisiting the Graph Reasoning Ability of Large Language Models: Case Studies in Translation, Connectivity and Shortest Path [53.71787069694794]
大規模言語モデル(LLM)のグラフ推論能力に着目する。
グラフ記述変換,グラフ接続,最短パス問題という3つの基本グラフタスクにおけるLLMの能力を再考する。
この結果から,LLMはテキスト記述によるグラフ構造理解に失敗し,これらの基本課題に対して様々な性能を示すことが可能であることが示唆された。
論文 参考訳(メタデータ) (2024-08-18T16:26:39Z) - On Pre-training of Multimodal Language Models Customized for Chart Understanding [83.99377088129282]
本稿では,MLLMのチャート理解を改善するために必要な学習過程について考察する。
詳細なチャート理解に適したMLLMであるCHOPINLLMを紹介する。
論文 参考訳(メタデータ) (2024-07-19T17:58:36Z) - CharXiv: Charting Gaps in Realistic Chart Understanding in Multimodal LLMs [62.84082370758761]
CharXivは、arXiv論文の2,323のチャートを含む総合的な評価スイートである。
品質を確保するために、すべてのチャートと質問は、人間の専門家によって手書きされ、キュレーションされ、検証されます。
その結果、最強のプロプライエタリモデルの推論スキルの間に、かなり過小評価されていたギャップが明らかとなった。
論文 参考訳(メタデータ) (2024-06-26T17:50:11Z) - AltChart: Enhancing VLM-based Chart Summarization Through Multi-Pretext Tasks [31.414783623207477]
本稿では,AltChartデータセットについて紹介する。
本稿では,視覚言語モデル(VLM)を事前学習し,詳細なチャート表現を学習する手法を提案する。
我々は,4つの主要なチャート要約モデルの広範囲な評価を行い,それらの記述がどの程度アクセス可能かを分析した。
論文 参考訳(メタデータ) (2024-05-22T12:18:52Z) - From Pixels to Insights: A Survey on Automatic Chart Understanding in the Era of Large Foundation Models [98.41645229835493]
グラフ形式のデータの可視化は、データ分析において重要な役割を担い、重要な洞察を提供し、情報的な意思決定を支援する。
大規模言語モデルのような大規模な基盤モデルは、様々な自然言語処理タスクに革命をもたらした。
本研究は,自然言語処理,コンピュータビジョン,データ解析の分野における研究者や実践者の包括的資源として機能する。
論文 参考訳(メタデータ) (2024-03-18T17:57:09Z) - Behind the Magic, MERLIM: Multi-modal Evaluation Benchmark for Large Image-Language Models [50.653838482083614]
本稿では,IT-LVLMの基本的なコンピュータビジョンタスクにおける能力を評価するために,スケーラブルなテストベッドを提案する。
MERLIMには300K以上の画像検索ペアが含まれており、IT-LVLMにおけるクロスモーダルな"ハロシン化"イベントの検出に重点を置いている。
論文 参考訳(メタデータ) (2023-12-03T16:39:36Z) - Disentangled Representation Learning with Large Language Models for
Text-Attributed Graphs [57.052160123387104]
本稿では,TAGに対するLLMの推論と予測能力を向上させることができるDGTLモデルを提案する。
提案するDGTLモデルでは, グラフ構造情報をGNN層に組み込む。
実験により,提案したDGTLモデルにより,最先端のベースラインよりも優れた性能,あるいは同等の性能が得られることを示した。
論文 参考訳(メタデータ) (2023-10-27T14:00:04Z) - GPT4Graph: Can Large Language Models Understand Graph Structured Data ?
An Empirical Evaluation and Benchmarking [17.7473474499538]
ChatGPTのような大規模言語モデルは、人工知能にとって欠かせないものとなっている。
本研究では,グラフデータの解釈において,LLMの精度を評価するための調査を行う。
この知見は,言語モデルとグラフ理解のギャップを埋めるための貴重な洞察に寄与する。
論文 参考訳(メタデータ) (2023-05-24T11:53:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。