論文の概要: StyDeSty: Min-Max Stylization and Destylization for Single Domain Generalization
- arxiv url: http://arxiv.org/abs/2406.00275v1
- Date: Sat, 1 Jun 2024 02:41:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 07:54:19.376307
- Title: StyDeSty: Min-Max Stylization and Destylization for Single Domain Generalization
- Title(参考訳): StyDeSty: 単一領域一般化のためのMin-Maxスティル化とデスティル化
- Authors: Songhua Liu, Xin Jin, Xingyi Yang, Jingwen Ye, Xinchao Wang,
- Abstract要約: 単一のドメインの一般化(単一DG)は、単一のトレーニングドメインからのみ見えないドメインに一般化可能な堅牢なモデルを学ぶことを目的としている。
最先端のアプローチは、主に新しいデータを合成するために、敵対的な摂動やスタイルの強化といったデータ拡張に頼っている。
データ拡張の過程で、ソースと擬似ドメインのアライメントを明示的に考慮したemphStyDeStyを提案する。
- 参考スコア(独自算出の注目度): 85.18995948334592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Single domain generalization (single DG) aims at learning a robust model generalizable to unseen domains from only one training domain, making it a highly ambitious and challenging task. State-of-the-art approaches have mostly relied on data augmentations, such as adversarial perturbation and style enhancement, to synthesize new data and thus increase robustness. Nevertheless, they have largely overlooked the underlying coherence between the augmented domains, which in turn leads to inferior results in real-world scenarios. In this paper, we propose a simple yet effective scheme, termed as \emph{StyDeSty}, to explicitly account for the alignment of the source and pseudo domains in the process of data augmentation, enabling them to interact with each other in a self-consistent manner and further giving rise to a latent domain with strong generalization power. The heart of StyDeSty lies in the interaction between a \emph{stylization} module for generating novel stylized samples using the source domain, and a \emph{destylization} module for transferring stylized and source samples to a latent domain to learn content-invariant features. The stylization and destylization modules work adversarially and reinforce each other. During inference, the destylization module transforms the input sample with an arbitrary style shift to the latent domain, in which the downstream tasks are carried out. Specifically, the location of the destylization layer within the backbone network is determined by a dedicated neural architecture search (NAS) strategy. We evaluate StyDeSty on multiple benchmarks and demonstrate that it yields encouraging results, outperforming the state of the art by up to {13.44%} on classification accuracy. Codes are available here: https://github.com/Huage001/StyDeSty.
- Abstract(参考訳): 単一ドメインの一般化(単一DG)は、単一のトレーニングドメインからのみ見えないドメインに一般化可能な堅牢なモデルを学ぶことを目的としており、非常に野心的で挑戦的なタスクである。
最先端のアプローチは、主に、新しいデータを合成し、堅牢性を高めるために、敵対的な摂動やスタイルの強化のようなデータ拡張に依存している。
それでも彼らは、拡張されたドメイン間のコヒーレンスを概ね見落としており、現実のシナリオでは結果が劣っている。
本稿では,データ拡張過程におけるソースドメインと疑似ドメインのアライメントを明示的に考慮し,自己整合的に相互に対話し,強力な一般化力を持つ潜伏ドメインを創出する,シンプルで効果的なスキームを提案する。
StyDeStyの心臓部は、ソースドメインを使用して新しいスタイリングされたサンプルを生成する \emph{stylization} モジュールと、スタイリングされたサンプルとソースサンプルを潜在ドメインに転送してコンテンツ不変の機能を学ぶ \emph{destylization} モジュールとの相互作用にある。
スタイリゼーションとデスティリゼーションモジュールは逆向きに働き、互いに強化する。
推論中、デスティル化モジュールは入力サンプルを任意のスタイルのシフトで変換し、下流タスクを実行する。
具体的には、バックボーンネットワーク内のデスティリゼーション層の位置は、専用のニューラルアーキテクチャサーチ(NAS)戦略によって決定される。
我々は、複数のベンチマークでStyDeStyを評価し、それが奨励的な結果をもたらし、分類精度を最大13.44%向上させることを示した。
コードは、https://github.com/Huage001/StyDeSty.comで入手できる。
関連論文リスト
- Domain Expansion and Boundary Growth for Open-Set Single-Source Domain Generalization [70.02187124865627]
オープンソースの単一ソースドメインの一般化は、単一のソースドメインを使用して、未知のターゲットドメインに一般化可能な堅牢なモデルを学ぶことを目的としている。
本稿では,領域拡大と境界成長に基づく新しい学習手法を提案する。
提案手法は,いくつかの領域横断画像分類データセットにおいて,大幅な改善と最先端性能を実現することができる。
論文 参考訳(メタデータ) (2024-11-05T09:08:46Z) - START: A Generalized State Space Model with Saliency-Driven Token-Aware Transformation [27.301312891532277]
ドメイン一般化(Domain Generalization, DG)は、複数のソースドメインから学習することで、モデルが対象ドメインを見えないように一般化できるようにすることを目的としている。
本稿では,最新技術(SOTA)のパフォーマンスを達成し,CNNやViTと競合する代替手段を提供するSTARTを提案する。
我々のSTARTは、SSMの入力依存行列内の有意なトークンのドメイン固有の特徴を選択的に摂動し、抑制することができるため、異なるドメイン間の差異を効果的に低減できる。
論文 参考訳(メタデータ) (2024-10-21T13:50:32Z) - Attention-based Cross-Layer Domain Alignment for Unsupervised Domain
Adaptation [14.65316832227658]
教師なしドメイン適応(Unsupervised domain adapt, UDA)は、ラベル付きソースドメインから伝達可能な知識を学び、トレーニングされたモデルをラベルなしターゲットドメインに適応させることを目的としている。
1つの一般的な戦略は、ディープモデルによって抽出されたセマンティックな特徴を整合させることで、分布の相違を最小限にすることである。
論文 参考訳(メタデータ) (2022-02-27T08:36:12Z) - Unsupervised Domain Adaptation for Semantic Segmentation via Low-level
Edge Information Transfer [27.64947077788111]
セマンティックセグメンテーションのための教師なしドメイン適応は、合成データに基づいて訓練されたモデルを実際の画像に適応させることを目的としている。
従来の特徴レベルの対数学習手法は、高レベルの意味的特徴に適応するモデルのみを考慮していた。
本稿では,ドメイン間ギャップが小さい低レベルエッジ情報を明示的に利用して意味情報の伝達をガイドする試みについて紹介する。
論文 参考訳(メタデータ) (2021-09-18T11:51:31Z) - Adapting Segmentation Networks to New Domains by Disentangling Latent
Representations [14.050836886292869]
ドメイン適応アプローチは、ラベルを持つソースドメインから取得した知識を関連するラベルを持つターゲットドメインに転送する役割を担っている。
本稿では,教師付きトレーニングと比較して適応戦略の相対的有効性を捉えるための新しい性能指標を提案する。
論文 参考訳(メタデータ) (2021-08-06T09:43:07Z) - Source-Free Open Compound Domain Adaptation in Semantic Segmentation [99.82890571842603]
SF-OCDAでは、ターゲットモデルを学習するために、ソース事前訓練されたモデルとターゲットデータのみが利用可能である。
そこで我々は,Cross-Patch Style Swap (CPSS)を提案する。
提案手法は,C-Drivingデータセット上で最先端の結果を生成する。
論文 参考訳(メタデータ) (2021-06-07T08:38:41Z) - Cluster, Split, Fuse, and Update: Meta-Learning for Open Compound Domain
Adaptive Semantic Segmentation [102.42638795864178]
セマンティックセグメンテーションのための原則的メタラーニングに基づくOCDAアプローチを提案する。
対象ドメインを複数のサブターゲットドメインに,教師なしの方法で抽出した画像スタイルでクラスタリングする。
その後、メタラーニングがデプロイされ、スタイルコードに条件付きでサブターゲットドメイン固有の予測を融合するように学習される。
モデルに依存しないメタラーニング(MAML)アルゴリズムにより,モデルをオンライン更新することを学び,一般化をさらに改善する。
論文 参考訳(メタデータ) (2020-12-15T13:21:54Z) - Alleviating Semantic-level Shift: A Semi-supervised Domain Adaptation
Method for Semantic Segmentation [97.8552697905657]
このタスクの重要な課題は、ソースとターゲットドメイン間のデータ分散の相違を緩和する方法である。
本稿では,グローバルな視点とローカルな視点の両方から分布の整合性を促進できるASS(Alleviating Semantic-level Shift)を提案する。
GTA5、Cityscapes、Synthia、Cityscapesの2つのドメイン適応タスクにASSを適用します。
論文 参考訳(メタデータ) (2020-04-02T03:25:05Z) - Bi-Directional Generation for Unsupervised Domain Adaptation [61.73001005378002]
教師なしのドメイン適応は、確立されたソースドメイン情報に依存するラベルなしのターゲットドメインを促進する。
従来の手法では、潜在空間におけるドメインの不一致を強制的に低減することで、本質的なデータ構造が破壊される。
本稿では、2つの中間領域をブリッジソースとターゲットドメインに補間する一貫した分類器を用いた双方向生成ドメイン適応モデルを提案する。
論文 参考訳(メタデータ) (2020-02-12T09:45:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。