論文の概要: Non-destructive Degradation Pattern Decoupling for Ultra-early Battery Prototype Verification Using Physics-informed Machine Learning
- arxiv url: http://arxiv.org/abs/2406.00276v1
- Date: Sat, 1 Jun 2024 02:43:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 07:54:19.372762
- Title: Non-destructive Degradation Pattern Decoupling for Ultra-early Battery Prototype Verification Using Physics-informed Machine Learning
- Title(参考訳): 物理インフォームド・機械学習を用いた超早期電池プロトタイプ検証のための非破壊劣化パターンデカップリング
- Authors: Shengyu Tao, Mengtian Zhang, Zixi Zhao, Haoyang Li, Ruifei Ma, Yunhong Che, Xin Sun, Lin Su, Xiangyu Chen, Zihao Zhou, Heng Chang, Tingwei Cao, Xiao Xiao, Yaojun Liu, Wenjun Yu, Zhongling Xu, Yang Li, Han Hao, Xuan Zhang, Xiaosong Hu, Guangmin ZHou,
- Abstract要約: 物理インフォームド機械学習手法により,電気信号のみを用いて熱力学と運動学に関する時間分解損失を定量化し,可視化することができることを示す。
本手法は,全生涯の軌跡の予測を高速化し,非破壊的な劣化パターンのキャラクタリゼーションを可能にする。
このような進歩は、大量生産の前に欠陥のある試作機をより持続的に管理し、2060年までに1976億米ドルのスクラップ素材リサイクル市場を築き上げた。
- 参考スコア(独自算出の注目度): 21.037251393650482
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Manufacturing complexities and uncertainties have impeded the transition from material prototypes to commercial batteries, making prototype verification critical to quality assessment. A fundamental challenge involves deciphering intertwined chemical processes to characterize degradation patterns and their quantitative relationship with battery performance. Here we show that a physics-informed machine learning approach can quantify and visualize temporally resolved losses concerning thermodynamics and kinetics only using electric signals. Our method enables non-destructive degradation pattern characterization, expediting temperature-adaptable predictions of entire lifetime trajectories, rather than end-of-life points. The verification speed is 25 times faster yet maintaining 95.1% accuracy across temperatures. Such advances facilitate more sustainable management of defective prototypes before massive production, establishing a 19.76 billion USD scrap material recycling market by 2060 in China. By incorporating stepwise charge acceptance as a measure of the initial manufacturing variability of normally identical batteries, we can immediately identify long-term degradation variations. We attribute the predictive power to interpreting machine learning insights using material-agnostic featurization taxonomy for degradation pattern decoupling. Our findings offer new possibilities for dynamic system analysis, such as battery prototype degradation, demonstrating that complex pattern evolutions can be accurately predicted in a non-destructive and data-driven fashion by integrating physics-informed machine learning.
- Abstract(参考訳): 製造の複雑さと不確実性により、材料プロトタイプから商用バッテリーへの移行が妨げられ、品質評価にとってプロトタイプの検証が重要になった。
基本的な課題は、相互に結合した化学過程を解読して劣化パターンとバッテリー性能との定量的な関係を特徴づけることである。
ここでは, 物理インフォームド機械学習手法を用いて, 熱力学と運動学に関する時間分解損失を, 電気信号のみを用いて定量化し, 可視化することができることを示す。
本手法は, 終末点ではなく, 終末軌道の温度適応予測を高速化し, 非破壊劣化パターンのキャラクタリゼーションを可能にする。
検証速度は25倍速く、温度の95.1%の精度を維持している。
このような進歩は、大量生産の前に欠陥のある試作機をより持続的に管理し、2060年までに1976億米ドルのスクラップ素材リサイクル市場を築き上げた。
通常の同一電池の初期製造変動の尺度として段階的に電荷受け入れを組み込むことで, 長期劣化のばらつきを即座に識別できる。
我々は、劣化パターンのデカップリングに物質非依存の成果化分類を用いて機械学習の洞察を解釈するのに、予測力があると考えている。
本研究は, 複雑なパターンの進化を非破壊的かつデータ駆動的な方法で正確に予測し, 物理インフォームド・機械学習を組み込むことにより, 動的システム解析の可能性を示すものである。
関連論文リスト
- Generating Comprehensive Lithium Battery Charging Data with Generative AI [24.469319419012745]
本研究では、生成AIモデルの条件として、EOL(End of Life)とECL(Equivalent Cycle Life)を紹介する。
CVAEモデルに埋め込み層を組み込むことにより, RCVAE(Refined Conditional Variational Autoencoder)を開発した。
準ビデオ形式にプリプロセッシングすることで、電圧、電流、温度、充電容量を含む電気化学データの総合的な合成を実現する。
この方法は、リチウム電池データの人工合成のための新しい研究領域を開拓する、包括的な電気化学データセットを提供する。
論文 参考訳(メタデータ) (2024-04-11T09:08:45Z) - UAlign: Pushing the Limit of Template-free Retrosynthesis Prediction with Unsupervised SMILES Alignment [51.49238426241974]
本稿では,テンプレートのないグラフ・ツー・シーケンスパイプラインであるUAlignを紹介した。
グラフニューラルネットワークとトランスフォーマーを組み合わせることで、分子固有のグラフ構造をより効果的に活用することができる。
論文 参考訳(メタデータ) (2024-03-25T03:23:03Z) - Depth analysis of battery performance based on a data-driven approach [5.778648596769691]
容量の減少は、細胞の応用における最も難解な問題の1つである。
サイクルを通してのセルの容量変化を機械学習技術を用いて予測する。
論文 参考訳(メタデータ) (2023-08-30T08:15:27Z) - HomoDistil: Homotopic Task-Agnostic Distillation of Pre-trained
Transformers [49.79405257763856]
本稿では,タスク非依存蒸留に焦点をあてる。
これは、計算コストとメモリフットプリントを小さくして、様々なタスクで簡単に微調整できるコンパクトな事前訓練モデルを生成する。
本稿では, 反復刈り込みによる新規なタスク非依存蒸留法であるHomotopic Distillation (HomoDistil)を提案する。
論文 参考訳(メタデータ) (2023-02-19T17:37:24Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
近年、機械学習(ML)モデルはカオス力学系の力学を正確に予測するために訓練可能であることが示されている。
緩和技術がなければ、この技術は人工的に迅速にエラーを発生させ、不正確な予測と/または気候不安定をもたらす可能性がある。
トレーニング中にモデル入力に付加される多数の独立雑音実効化の効果を決定論的に近似する正規化手法であるLinearized Multi-Noise Training (LMNT)を導入する。
論文 参考訳(メタデータ) (2022-11-09T23:40:52Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
ライン障害のリアルタイムかつ正確な検出は、極端な気象の影響を緩和し、緊急制御を活性化する最初のステップである。
電力収支方程式は、非線形性、極端な事象における発生の不確実性の増加、グリッドオブザーバビリティの欠如は、従来のデータ駆動障害検出手法の効率を損なう。
本稿では,グリッドトポロジ情報を利用した物理インフォームドライン故障検出器(FIELD)を提案する。
論文 参考訳(メタデータ) (2022-08-31T18:19:25Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
地下貯水池の過圧化を避けることは、CO2の沈殿や排水の注入といった用途に欠かせない。
地中における複雑な不均一性のため, 噴射・抽出制御による圧力管理は困難である。
過圧化防止のための流体抽出速度を決定するために、フル物理モデルと機械学習を用いた微分可能プログラミングを用いる。
論文 参考訳(メタデータ) (2022-06-21T20:38:13Z) - Dynaformer: A Deep Learning Model for Ageing-aware Battery Discharge
Prediction [2.670887944566458]
本稿では,少数の電圧/電流サンプルから同時に老化状態を推定できるトランスフォーマーに基づく新しいディープラーニングアーキテクチャを提案する。
実験の結果, 学習モデルは様々な複雑さの入力電流分布に有効であり, 広範囲の劣化レベルに対して堅牢であることがわかった。
論文 参考訳(メタデータ) (2022-06-01T15:31:06Z) - Uncertainty estimation for molecular dynamics and sampling [0.0]
機械学習モデルは、時間を要する電子構造計算をサイドステップする非常に効果的な戦略として登場した。
モデルのトレーニング中に含まれる有限個の参照構造から導かれる誤差を推定することは非常に重要である。
本報告では, 水や液体ガリウムほど多様な構造特性と熱力学特性, システムについて述べる。
論文 参考訳(メタデータ) (2020-11-10T00:07:50Z) - Invariant learning based multi-stage identification for Lithium-ion
battery performance degradation [16.637948430296227]
本稿では,電池性能劣化が一定の動作に追従するかどうかを検討するために,不変学習に基づく手法を提案する。
複数の劣化挙動の存在を判断するために, 新たな多段階分割戦略が提案されている。
提案手法は,データの観点からの劣化メカニズムの洞察を可能にするだけでなく,健康状態などの関連トピックにも有効である。
論文 参考訳(メタデータ) (2020-08-12T06:09:46Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
電動垂直離着陸機(eVTOL)の設計、解析、運用には、Liイオン電池の性能の迅速かつ正確な予測が必要である。
我々は,eVTOLのデューティサイクルに特有の電池性能と熱的挙動のデータセットを生成する。
このデータセットを用いて,物理インフォームド機械学習を用いた電池性能・劣化モデル(Cellfit)を開発した。
論文 参考訳(メタデータ) (2020-07-06T16:10:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。