論文の概要: A Scientific Machine Learning Approach for Predicting and Forecasting Battery Degradation in Electric Vehicles
- arxiv url: http://arxiv.org/abs/2410.14347v1
- Date: Fri, 18 Oct 2024 09:57:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:26:29.433872
- Title: A Scientific Machine Learning Approach for Predicting and Forecasting Battery Degradation in Electric Vehicles
- Title(参考訳): 電気自動車のバッテリー劣化予測と予測のための科学的機械学習手法
- Authors: Sharv Murgai, Hrishikesh Bhagwat, Raj Abhijit Dandekar, Rajat Dandekar, Sreedath Panat,
- Abstract要約: 我々は,Scientific Machine Learningフレームワークを用いて,電池劣化の予測と長期予測を行う新しい手法を提案する。
我々は、予測と予測の両方が実用的な条件を反映していることを保証するために、地中真実データを組み込んだ。
我々のアプローチは、エネルギーシステムの持続可能性に貢献し、よりクリーンで責任あるエネルギーソリューションへの世界的移行を加速させる。
- 参考スコア(独自算出の注目度): 1.393499936476792
- License:
- Abstract: Carbon emissions are rising at an alarming rate, posing a significant threat to global efforts to mitigate climate change. Electric vehicles have emerged as a promising solution, but their reliance on lithium-ion batteries introduces the critical challenge of battery degradation. Accurate prediction and forecasting of battery degradation over both short and long time spans are essential for optimizing performance, extending battery life, and ensuring effective long-term energy management. This directly influences the reliability, safety, and sustainability of EVs, supporting their widespread adoption and aligning with key UN SDGs. In this paper, we present a novel approach to the prediction and long-term forecasting of battery degradation using Scientific Machine Learning framework which integrates domain knowledge with neural networks, offering more interpretable and scientifically grounded solutions for both predicting short-term battery health and forecasting degradation over extended periods. This hybrid approach captures both known and unknown degradation dynamics, improving predictive accuracy while reducing data requirements. We incorporate ground-truth data to inform our models, ensuring that both the predictions and forecasts reflect practical conditions. The model achieved MSE of 9.90 with the UDE and 11.55 with the NeuralODE, in experimental data, a loss of 1.6986 with the UDE, and a MSE of 2.49 in the NeuralODE, demonstrating the enhanced precision of our approach. This integration of data-driven insights with SciML's strengths in interpretability and scalability allows for robust battery management. By enhancing battery longevity and minimizing waste, our approach contributes to the sustainability of energy systems and accelerates the global transition toward cleaner, more responsible energy solutions, aligning with the UN's SDG agenda.
- Abstract(参考訳): 二酸化炭素排出量は急上昇しており、気候変動を緩和する世界的な取り組みにとって大きな脅威となっている。
電気自動車は有望な解決策として現れてきたが、リチウムイオン電池への依存がバッテリー劣化の重要な課題となっている。
電池寿命を最適化し, 電池寿命を延ばし, 有効長期エネルギー管理を確保するためには, 短時間・長時間のバッテリー劣化の正確な予測と予測が不可欠である。
これはEVの信頼性、安全性、持続可能性に直接影響を与え、広く採用され、主要な国連 SDG との整合性をサポートする。
本稿では,ニューラルネットワークとドメイン知識を統合したScientific Machine Learningフレームワークを用いて,バッテリー劣化の予測と長期予測を行う新しい手法を提案する。
このハイブリッドアプローチは、既知の劣化ダイナミクスと未知の劣化ダイナミクスの両方をキャプチャし、データ要求を減らしながら予測精度を向上させる。
我々は、予測と予測の両方が実用的な条件を反映していることを保証するために、地中真実データを組み込んだ。
実験データでは、UDEで9.90 MSE、NeuralODEで11.55 MSE、UDEで1.6986、NeuralODEで2.49 MSEを達成し、我々のアプローチの精度を向上した。
データ駆動の洞察とSciMLの解釈可能性とスケーラビリティの強みを統合することで、堅牢なバッテリ管理が可能になる。
電池寿命の向上と廃棄物の最小化により、我々のアプローチはエネルギーシステムの持続可能性に寄与し、国連のSDGアジェンダに沿って、よりクリーンで責任あるエネルギーソリューションへの世界的移行を加速します。
関連論文リスト
- Transformer-based Capacity Prediction for Lithium-ion Batteries with Data Augmentation [0.0]
リチウムイオン電池は、輸送、電子機器、クリーンエネルギー貯蔵の技術の進歩に欠かせない。
キャパシティを推定する現在の方法は、キー変数の長期的な時間的依存関係を適切に説明できない。
本研究では,電池データにおける長期パターンと短期パターンの両方を考慮した変圧器ベースの電池容量予測モデルを構築した。
論文 参考訳(メタデータ) (2024-07-22T20:21:40Z) - Practical Battery Health Monitoring using Uncertainty-Aware Bayesian Neural Network [3.7740149124520315]
本研究では,バッテリ寿命予測のためのベイズニューラルネットワークに基づくモデルを開発する。
本モデルでは,モデルの各パラメータに対して,バッテリ健康に関するセンサデータを使用し,単一点ではなく分布を適用した。
全ての予測には定量的な確実性が含まれており、バッテリーの初期から中期にかけて66%改善されている。
論文 参考訳(メタデータ) (2024-04-20T05:13:14Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - GPT4Battery: An LLM-driven Framework for Adaptive State of Health
Estimation of Raw Li-ion Batteries [20.144140373356194]
健康状態 (SOH) は、直接測定できないが推定を必要とする電池の劣化レベルを評価するための重要な指標である。
本稿では, 多様な電池にまたがる適応型SOH推定のための新しいフレームワークを提案する。
提案手法は,62個のバッテリから収集した4つの広く認識されているデータセットに対して,最先端の精度を実現する。
論文 参考訳(メタデータ) (2024-01-30T14:47:15Z) - Comparison and Evaluation of Methods for a Predict+Optimize Problem in
Renewable Energy [42.00952788334554]
本稿では2021年に開催されたIEEE-CIS Technical Challenge on Predict+ for Renewable Energy Schedulingについて述べる。
コンペティションにおける上位7つのソリューションの比較と評価を行う。
勝算法は異なるシナリオを予測し、サンプル平均近似法を用いて全てのシナリオに最適化した。
論文 参考訳(メタデータ) (2022-12-21T02:34:12Z) - A Machine Learning-based Digital Twin for Electric Vehicle Battery
Modeling [10.290868910435153]
電気自動車(EV)は、経年劣化と性能劣化の影響を受ける。
本研究は,実行時のバッテリダイナミックスを正確に反映するように設計されたバッテリディジタルツイン構造を提案する。
論文 参考訳(メタデータ) (2022-06-16T10:47:41Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
本稿では,物理制約付き深部ニューラルネットワーク(PCDNN)による高精度電圧予測手法を提案する。
ePCDNNは、電圧放電曲線のテール領域を含む電荷放電サイクルを通して、電圧応答を正確にキャプチャすることができる。
論文 参考訳(メタデータ) (2022-03-03T19:56:24Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
本稿では,フェデレートラーニングモデルに基づく不安度を測る新しい手法を提案する。
バッテリー消費を推定し、車両ネットワークにエネルギー効率の高いルートプランニングを提供する。
論文 参考訳(メタデータ) (2021-11-13T15:03:44Z) - Hybrid physics-based and data-driven modeling with calibrated
uncertainty for lithium-ion battery degradation diagnosis and prognosis [6.7143928677892335]
リチウムイオン電池(LIB)は今後数十年で電化を促進する鍵となる。
LIB劣化の不十分な理解は、バッテリーの耐久性と安全性を制限する重要なボトルネックである。
本稿では,オンライン診断とバッテリー劣化の診断のためのハイブリッド物理とデータ駆動モデリングを提案する。
論文 参考訳(メタデータ) (2021-10-25T11:14:12Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
電動垂直離着陸機(eVTOL)の設計、解析、運用には、Liイオン電池の性能の迅速かつ正確な予測が必要である。
我々は,eVTOLのデューティサイクルに特有の電池性能と熱的挙動のデータセットを生成する。
このデータセットを用いて,物理インフォームド機械学習を用いた電池性能・劣化モデル(Cellfit)を開発した。
論文 参考訳(メタデータ) (2020-07-06T16:10:54Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
エッジコンピューティング機能を有するセルフパワー無線ネットワークの効率的なエネルギー分配機構について検討した。
定式化問題を解くために,新しいマルチエージェントメタ強化学習(MAMRL)フレームワークを提案する。
実験の結果、提案されたMAMRLモデルは、再生不可能なエネルギー使用量を最大11%削減し、エネルギーコストを22.4%削減できることが示された。
論文 参考訳(メタデータ) (2020-02-20T04:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。