A Novel Quantum-Classical Hybrid Algorithm for Determining Eigenstate Energies in Quantum Systems
- URL: http://arxiv.org/abs/2406.00296v1
- Date: Sat, 1 Jun 2024 04:31:43 GMT
- Title: A Novel Quantum-Classical Hybrid Algorithm for Determining Eigenstate Energies in Quantum Systems
- Authors: Qing-Xing Xie, Yan Zhao,
- Abstract summary: We introduce a novel quantum XZ24 algorithm, designed for efficiently computing the eigen-energy spectra of any quantum systems.
Compared to existing quantum methods, the new algorithm stands out for its remarkably low measurement cost.
We anticipate that the new algorithm will drive significant progress in quantum system simulation and offer promising applications in quantum computing and quantum information processing.
- Score: 1.9714447272714082
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Developing efficient quantum computing algorithms is crucial for addressing computationally challenging problems across various fields. In this paper, we introduce a novel quantum XZ24 algorithm, designed for efficiently computing the eigen-energy spectra of any quantum systems. The algorithm employs an auxiliary qubit as a control qubit to execute a pair of time-reversing real-time evolutions of Hamiltonian $\hat{H}$ on the target qubits. The reference state wavefunction $|\phi_0 \rangle$ is stored in target qubits. When the control qubit (i.e., the auxiliary qubit) is in the 0 (1) state, the $e^{-i\hat{H}t/2} (e^{i\hat{H}t/2})$ evolution operator is applied. By combining Hadamard gates and phase gates on the auxiliary qubit, information about $\langle \psi_0 | \cos(\hat{H}t) | \psi_0 \rangle$ can be obtained from the output auxiliary qubit state. Theoretically, applying the Fourier transformation to the $\langle \psi_0 | \cos(\hat{H}t) | \psi_0 \rangle$ signal can resolve the eigen-energies of the Hamiltonian in the spectrum. We provide theoretical analysis and numerical simulations of the algorithm, demonstrating its advantages in computational efficiency and accuracy. Compared to existing quantum methods, the new algorithm stands out for its remarkably low measurement cost. For quantum systems of any complexity, only a single auxiliary qubit needs to be measured, resulting in a measurement complexity of $O(1)$. Moreover, this method can simultaneously obtain multiple eigen-energies, dependent on the reference state. We anticipate that the new algorithm will drive significant progress in quantum system simulation and offer promising applications in quantum computing and quantum information processing.
Related papers
- Optimizing random local Hamiltonians by dissipation [44.99833362998488]
We prove that a simplified quantum Gibbs sampling algorithm achieves a $Omega(frac1k)$-fraction approximation of the optimum.
Our results suggest that finding low-energy states for sparsified (quasi)local spin and fermionic models is quantumly easy but classically nontrivial.
arXiv Detail & Related papers (2024-11-04T20:21:16Z) - Resource-efficient algorithm for estimating the trace of quantum state powers [1.5133368155322298]
Estimating the trace of quantum state powers, $textTr(rhok)$, for $k$ identical quantum states is a fundamental task.<n>We introduce an algorithm that requires only $mathcalO(tilder)$ qubits and $mathcalO(tilder)$ multi-qubit gates.<n>We extend our algorithm to the estimation of $textTr(rhok)$ for arbitrary observables and $textTr(rhok)
arXiv Detail & Related papers (2024-08-01T06:23:52Z) - Calculating response functions of coupled oscillators using quantum phase estimation [40.31060267062305]
We study the problem of estimating frequency response functions of systems of coupled, classical harmonic oscillators using a quantum computer.
Our proposed quantum algorithm operates in the standard $s-sparse, oracle-based query access model.
We show that a simple adaptation of our algorithm solves the random glued-trees problem in time.
arXiv Detail & Related papers (2024-05-14T15:28:37Z) - Variational-quantum-eigensolver-inspired optimization for spin-chain work extraction [39.58317527488534]
Energy extraction from quantum sources is a key task to develop new quantum devices such as quantum batteries.
One of the main issues to fully extract energy from the quantum source is the assumption that any unitary operation can be done on the system.
We propose an approach to optimize the extractable energy inspired by the variational quantum eigensolver (VQE) algorithm.
arXiv Detail & Related papers (2023-10-11T15:59:54Z) - Quantum State Preparation with Optimal Circuit Depth: Implementations
and Applications [10.436969366019015]
We show that any $Theta(n)$-depth circuit can be prepared with a $Theta(log(nd)) with $O(ndlog d)$ ancillary qubits.
We discuss applications of the results in different quantum computing tasks, such as Hamiltonian simulation, solving linear systems of equations, and realizing quantum random access memories.
arXiv Detail & Related papers (2022-01-27T13:16:30Z) - On quantum algorithms for the Schr\"odinger equation in the
semi-classical regime [27.175719898694073]
We consider Schr"odinger's equation in the semi-classical regime.
Such a Schr"odinger equation finds many applications, including in Born-Oppenheimer molecular dynamics and Ehrenfest dynamics.
arXiv Detail & Related papers (2021-12-25T20:01:54Z) - Estimating Gibbs partition function with quantumClifford sampling [6.656454497798153]
We develop a hybrid quantum-classical algorithm to estimate the partition function.
Our algorithm requires only a shallow $mathcalO(1)$-depth quantum circuit.
Shallow-depth quantum circuits are considered vitally important for currently available NISQ (Noisy Intermediate-Scale Quantum) devices.
arXiv Detail & Related papers (2021-09-22T02:03:35Z) - Asymptotically Optimal Circuit Depth for Quantum State Preparation and
General Unitary Synthesis [24.555887999356646]
The problem is of fundamental importance in quantum algorithm design, Hamiltonian simulation and quantum machine learning, yet its circuit depth and size complexity remain open when ancillary qubits are available.
In this paper, we study efficient constructions of quantum circuits with $m$ ancillary qubits that can prepare $psi_vrangle$ in depth.
Our circuits are deterministic, prepare the state and carry out the unitary precisely, utilize the ancillary qubits tightly and the depths are optimal in a wide range of parameter regime.
arXiv Detail & Related papers (2021-08-13T09:47:11Z) - Quantum Algorithm for Fidelity Estimation [8.270684567157987]
For two unknown mixed quantum states $rho$ and $sigma$ in an $N$-dimensional space, computing their fidelity $F(rho,sigma)$ is a basic problem.
We propose a quantum algorithm that solves this problem in $namepoly(log (N), r, 1/varepsilon)$ time.
arXiv Detail & Related papers (2021-03-16T13:57:01Z) - Enhancing the Quantum Linear Systems Algorithm using Richardson
Extrapolation [0.8057006406834467]
We present a quantum algorithm to solve systems of linear equations of the form $Amathbfx=mathbfb$.
The algorithm achieves an exponential improvement with respect to $N$ over classical methods.
arXiv Detail & Related papers (2020-09-09T18:00:09Z) - Efficient Two-Electron Ansatz for Benchmarking Quantum Chemistry on a
Quantum Computer [0.0]
We present an efficient ansatz for the computation of two-electron atoms and molecules within a hybrid quantum-classical algorithm.
The ansatz exploits the fundamental structure of the two-electron system, and treating the nonlocal and local degrees of freedom.
We implement this benchmark with error mitigation on two publicly available quantum computers.
arXiv Detail & Related papers (2020-04-21T23:37:48Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.