DSCA: A Digital Subtraction Angiography Sequence Dataset and Spatio-Temporal Model for Cerebral Artery Segmentation
- URL: http://arxiv.org/abs/2406.00341v1
- Date: Sat, 1 Jun 2024 07:35:21 GMT
- Title: DSCA: A Digital Subtraction Angiography Sequence Dataset and Spatio-Temporal Model for Cerebral Artery Segmentation
- Authors: Qihang Xie, Mengguo Guo, Lei Mou, Dan Zhang, Da Chen, Caifeng Shan, Yitian Zhao, Ruisheng Su, Jiong Zhang,
- Abstract summary: We introduce a DSA Sequence-based Cerebral Artery segmentation dataset (DSCA)
Unlike existing DSA segmentation methods that focus only on a single frame, the proposed DSANet introduces a separate temporal encoding branch to capture dynamic vessel details across multiple frames.
Extensive experiments demonstrate that DSANet outperforms other state-of-the-art methods in CA segmentation, achieving a Dice of 0.9033.
- Score: 26.05396884171782
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cerebrovascular diseases (CVDs) remain a leading cause of global disability and mortality. Digital Subtraction Angiography (DSA) sequences, recognized as the golden standard for diagnosing CVDs, can clearly visualize the dynamic flow and reveal pathological conditions within the cerebrovasculature. Therefore, precise segmentation of cerebral arteries (CAs) and classification between their main trunks and branches are crucial for physicians to accurately quantify diseases. However, achieving accurate CA segmentation in DSA sequences remains a challenging task due to small vessels with low contrast, and ambiguity between vessels and residual skull structures. Moreover, the lack of publicly available datasets limits exploration in the field. In this paper, we introduce a DSA Sequence-based Cerebral Artery segmentation dataset (DSCA), the first publicly accessible dataset designed specifically for pixel-level semantic segmentation of CAs. Additionally, we propose DSANet, a spatio-temporal network for CA segmentation in DSA sequences. Unlike existing DSA segmentation methods that focus only on a single frame, the proposed DSANet introduces a separate temporal encoding branch to capture dynamic vessel details across multiple frames. To enhance small vessel segmentation and improve vessel connectivity, we design a novel TemporalFormer module to capture global context and correlations among sequential frames. Furthermore, we develop a Spatio-Temporal Fusion (STF) module to effectively integrate spatial and temporal features from the encoder. Extensive experiments demonstrate that DSANet outperforms other state-of-the-art methods in CA segmentation, achieving a Dice of 0.9033.
Related papers
- KaLDeX: Kalman Filter based Linear Deformable Cross Attention for Retina Vessel Segmentation [46.57880203321858]
We propose a novel network (KaLDeX) for vascular segmentation leveraging a Kalman filter based linear deformable cross attention (LDCA) module.
Our approach is based on two key components: Kalman filter (KF) based linear deformable convolution (LD) and cross-attention (CA) modules.
The proposed method is evaluated on retinal fundus image datasets (DRIVE, CHASE_BD1, and STARE) as well as the 3mm and 6mm of the OCTA-500 dataset.
arXiv Detail & Related papers (2024-10-28T16:00:42Z) - Towards a Benchmark for Colorectal Cancer Segmentation in Endorectal Ultrasound Videos: Dataset and Model Development [59.74920439478643]
In this paper, we collect and annotated the first benchmark dataset that covers diverse ERUS scenarios.
Our ERUS-10K dataset comprises 77 videos and 10,000 high-resolution annotated frames.
We introduce a benchmark model for colorectal cancer segmentation, named the Adaptive Sparse-context TRansformer (ASTR)
arXiv Detail & Related papers (2024-08-19T15:04:42Z) - AGFA-Net: Attention-Guided and Feature-Aggregated Network for Coronary Artery Segmentation using Computed Tomography Angiography [5.583495103569884]
We propose an attention-guided, feature-aggregated 3D deep network (AGFA-Net) for coronary artery segmentation using CCTA images.
AGFA-Net leverages attention mechanisms and feature refinement modules to capture salient features and enhance segmentation accuracy.
Evaluation on a dataset comprising 1,000 CCTA scans demonstrates AGFA-Net's superior performance, achieving an average Dice coefficient similarity of 86.74% and a Hausdorff distance of 0.23 mm.
arXiv Detail & Related papers (2024-06-13T01:04:47Z) - TSI-Net: A Timing Sequence Image Segmentation Network for Intracranial
Artery Segmentation in Digital Subtraction Angiography [14.584220472118188]
We propose a timing sequence image segmentation network with U-shape, called TSI-Net.
It incorporates a bi-directional ConvGRU module (BCM) in the encoder, which can input variable-length DSA sequences.
The method performs significantly better than state-of-the-art networks in recent years.
arXiv Detail & Related papers (2023-09-07T04:44:38Z) - VesselShot: Few-shot learning for cerebral blood vessel segmentation [3.0612001095032335]
We propose a few-shot learning approach called VesselShot for cerebrovascular segmentation.
VesselShot leverages knowledge from a few annotated support images and mitigates the scarcity of labeled data.
We evaluated the performance of VesselShot using the publicly available TubeTK dataset for the segmentation task.
arXiv Detail & Related papers (2023-08-28T14:48:49Z) - DIAS: A Dataset and Benchmark for Intracranial Artery Segmentation in DSA sequences [19.61593883367223]
Intracranial Arteries (IA) in Digital Subtraction Angiography (DSA) plays a crucial role in the quantification of vascular morphology.
Current research primarily focuses on the segmentation of single-frame DSA using proprietary datasets.
We introduce DIAS, a dataset specifically developed for IA segmentation in DSA sequences.
arXiv Detail & Related papers (2023-06-21T10:03:56Z) - Structure-aware registration network for liver DCE-CT images [50.28546654316009]
We propose a novel structure-aware registration method by incorporating structural information of related organs with segmentation-guided deep registration network.
Our proposed method can achieve higher registration accuracy and preserve anatomical structure more effectively than state-of-the-art methods.
arXiv Detail & Related papers (2023-03-08T14:08:56Z) - Boundary Guided Semantic Learning for Real-time COVID-19 Lung Infection
Segmentation System [69.40329819373954]
The coronavirus disease 2019 (COVID-19) continues to have a negative impact on healthcare systems around the world.
At the current stage, automatically segmenting the lung infection area from CT images is essential for the diagnosis and treatment of COVID-19.
We propose a boundary guided semantic learning network (BSNet) in this paper.
arXiv Detail & Related papers (2022-09-07T05:01:38Z) - FetReg: Placental Vessel Segmentation and Registration in Fetoscopy
Challenge Dataset [57.30136148318641]
Fetoscopy laser photocoagulation is a widely used procedure for the treatment of Twin-to-Twin Transfusion Syndrome (TTTS)
This may lead to increased procedural time and incomplete ablation, resulting in persistent TTTS.
Computer-assisted intervention may help overcome these challenges by expanding the fetoscopic field of view through video mosaicking and providing better visualization of the vessel network.
We present a large-scale multi-centre dataset for the development of generalized and robust semantic segmentation and video mosaicking algorithms for the fetal environment with a focus on creating drift-free mosaics from long duration fetoscopy videos.
arXiv Detail & Related papers (2021-06-10T17:14:27Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
We propose a novel deep learning model called PC-Net to segment retinal vessels and major arteries in 2D fundus image and 3D computed tomography angiography (CTA) scans.
In PC-Net, the pyramid squeeze-and-excitation (PSE) module introduces spatial information to each convolutional block, boosting its ability to extract more effective multi-scale features.
arXiv Detail & Related papers (2020-10-09T08:22:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.