Learning Causal Abstractions of Linear Structural Causal Models
- URL: http://arxiv.org/abs/2406.00394v1
- Date: Sat, 1 Jun 2024 10:42:52 GMT
- Title: Learning Causal Abstractions of Linear Structural Causal Models
- Authors: Riccardo Massidda, Sara Magliacane, Davide Bacciu,
- Abstract summary: Causal Abstraction provides a framework for formalizing two Structural Causal Models at different levels of detail.
We tackle both issues for linear causal models with linear abstraction functions.
In particular, we introduce Abs-LiNGAM, a method that leverages the constraints induced by the learned high-level model and the abstraction function to speedup the recovery of the larger low-level model.
- Score: 18.132607344833925
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The need for modelling causal knowledge at different levels of granularity arises in several settings. Causal Abstraction provides a framework for formalizing this problem by relating two Structural Causal Models at different levels of detail. Despite increasing interest in applying causal abstraction, e.g. in the interpretability of large machine learning models, the graphical and parametrical conditions under which a causal model can abstract another are not known. Furthermore, learning causal abstractions from data is still an open problem. In this work, we tackle both issues for linear causal models with linear abstraction functions. First, we characterize how the low-level coefficients and the abstraction function determine the high-level coefficients and how the high-level model constrains the causal ordering of low-level variables. Then, we apply our theoretical results to learn high-level and low-level causal models and their abstraction function from observational data. In particular, we introduce Abs-LiNGAM, a method that leverages the constraints induced by the learned high-level model and the abstraction function to speedup the recovery of the larger low-level model, under the assumption of non-Gaussian noise terms. In simulated settings, we show the effectiveness of learning causal abstractions from data and the potential of our method in improving scalability of causal discovery.
Related papers
- Building Minimal and Reusable Causal State Abstractions for
Reinforcement Learning [63.58935783293342]
Causal Bisimulation Modeling (CBM) is a method that learns the causal relationships in the dynamics and reward functions for each task to derive a minimal, task-specific abstraction.
CBM's learned implicit dynamics models identify the underlying causal relationships and state abstractions more accurately than explicit ones.
arXiv Detail & Related papers (2024-01-23T05:43:15Z) - Neural Causal Abstractions [63.21695740637627]
We develop a new family of causal abstractions by clustering variables and their domains.
We show that such abstractions are learnable in practical settings through Neural Causal Models.
Our experiments support the theory and illustrate how to scale causal inferences to high-dimensional settings involving image data.
arXiv Detail & Related papers (2024-01-05T02:00:27Z) - Finding Alignments Between Interpretable Causal Variables and
Distributed Neural Representations [62.65877150123775]
Causal abstraction is a promising theoretical framework for explainable artificial intelligence.
Existing causal abstraction methods require a brute-force search over alignments between the high-level model and the low-level one.
We present distributed alignment search (DAS), which overcomes these limitations.
arXiv Detail & Related papers (2023-03-05T00:57:49Z) - Does Deep Learning Learn to Abstract? A Systematic Probing Framework [69.2366890742283]
Abstraction is a desirable capability for deep learning models, which means to induce abstract concepts from concrete instances and flexibly apply them beyond the learning context.
We introduce a systematic probing framework to explore the abstraction capability of deep learning models from a transferability perspective.
arXiv Detail & Related papers (2023-02-23T12:50:02Z) - Learning Latent Structural Causal Models [31.686049664958457]
In machine learning tasks, one often operates on low-level data like image pixels or high-dimensional vectors.
We present a tractable approximate inference method which performs joint inference over the causal variables, structure and parameters of the latent Structural Causal Model.
arXiv Detail & Related papers (2022-10-24T20:09:44Z) - Towards Computing an Optimal Abstraction for Structural Causal Models [16.17846886492361]
We focus on the problem of learning abstractions.
We suggest a concrete measure of information loss, and we illustrate its contribution to learning new abstractions.
arXiv Detail & Related papers (2022-08-01T14:35:57Z) - Causal Dynamics Learning for Task-Independent State Abstraction [61.707048209272884]
We introduce Causal Dynamics Learning for Task-Independent State Abstraction (CDL)
CDL learns a theoretically proved causal dynamics model that removes unnecessary dependencies between state variables and the action.
A state abstraction can then be derived from the learned dynamics.
arXiv Detail & Related papers (2022-06-27T17:02:53Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
A central goal for AI and causality is the joint discovery of abstract representations and causal structure.
Existing environments for studying causal induction are poorly suited for this objective because they have complicated task-specific causal graphs.
In this work, our goal is to facilitate research in learning representations of high-level variables as well as causal structures among them.
arXiv Detail & Related papers (2021-07-02T05:44:56Z) - Causal Inference with Deep Causal Graphs [0.0]
Parametric causal modelling techniques rarely provide functionality for counterfactual estimation.
Deep Causal Graphs is an abstract specification of the required functionality for a neural network to model causal distributions.
We demonstrate its expressive power in modelling complex interactions and showcase applications to machine learning explainability and fairness.
arXiv Detail & Related papers (2020-06-15T13:03:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.