論文の概要: Dual Hyperspectral Mamba for Efficient Spectral Compressive Imaging
- arxiv url: http://arxiv.org/abs/2406.00449v1
- Date: Sat, 1 Jun 2024 14:14:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 06:55:04.515313
- Title: Dual Hyperspectral Mamba for Efficient Spectral Compressive Imaging
- Title(参考訳): Dual Hyperspectral Mamba を用いた高能率分光圧縮イメージング
- Authors: Jiahua Dong, Hui Yin, Hongliu Li, Wenbo Li, Yulun Zhang, Salman Khan, Fahad Shahbaz Khan,
- Abstract要約: 本稿では,グローバルな長距離依存関係と局所的コンテキストの両方を探索し,効率的なHSI再構成を実現するために,DHM(Dual Hyperspectral Mamba)を提案する。
具体的には、DHMは複数の双対超スペクトルS4ブロック(DHSB)から構成され、元のHSIを復元する。
- 参考スコア(独自算出の注目度): 102.35787741640749
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep unfolding methods have made impressive progress in restoring 3D hyperspectral images (HSIs) from 2D measurements through convolution neural networks or Transformers in spectral compressive imaging. However, they cannot efficiently capture long-range dependencies using global receptive fields, which significantly limits their performance in HSI reconstruction. Moreover, these methods may suffer from local context neglect if we directly utilize Mamba to unfold a 2D feature map as a 1D sequence for modeling global long-range dependencies. To address these challenges, we propose a novel Dual Hyperspectral Mamba (DHM) to explore both global long-range dependencies and local contexts for efficient HSI reconstruction. After learning informative parameters to estimate degradation patterns of the CASSI system, we use them to scale the linear projection and offer noise level for the denoiser (i.e., our proposed DHM). Specifically, our DHM consists of multiple dual hyperspectral S4 blocks (DHSBs) to restore original HSIs. Particularly, each DHSB contains a global hyperspectral S4 block (GHSB) to model long-range dependencies across the entire high-resolution HSIs using global receptive fields, and a local hyperspectral S4 block (LHSB) to address local context neglect by establishing structured state-space sequence (S4) models within local windows. Experiments verify the benefits of our DHM for HSI reconstruction. The source codes and models will be available at https://github.com/JiahuaDong/DHM.
- Abstract(参考訳): 深部展開法は、スペクトル圧縮画像における畳み込みニューラルネットワークやトランスフォーマーによる2次元計測から3次元ハイパースペクトル画像(HSI)の復元において顕著な進歩を遂げている。
しかし、グローバルな受容場を用いて長距離依存を効率的に捉えることはできないため、HSI再構成の性能は著しく制限される。
さらに,これらの手法は,Mambaを直接利用してグローバルな長距離依存関係をモデル化するための2次元特徴写像を1次元シーケンスとして展開する場合,局所的文脈無視に悩まされる可能性がある。
これらの課題に対処するために,グローバルな長距離依存関係とローカルコンテキストの両方を探索し,効率的なHSI再構成を実現するために,DHM(Dual Hyperspectral Mamba)を提案する。
CASSIシステムの劣化パターンを推定するために情報的パラメータを学習した後、線形射影を拡大し、雑音レベル(DHM)を提供する。
具体的には、DHMは複数の双対超スペクトルS4ブロック(DHSB)から構成され、元のHSIを復元する。
特に、各DHSBは、大域的受容場を用いて高分解能HSI全体にわたる長距離依存関係をモデル化するグローバルハイパースペクトルS4ブロック(GHSB)と、ローカルウィンドウ内に構造化状態空間シーケンス(S4)モデルを確立することで、局所的コンテキスト無視に対処するローカルハイパースペクトルS4ブロック(LHSB)を含む。
HSI再建におけるDHMの有用性を検証する実験を行った。
ソースコードとモデルはhttps://github.com/JiahuaDong/DHM.comで入手できる。
関連論文リスト
- Unleashing Correlation and Continuity for Hyperspectral Reconstruction from RGB Images [64.80875911446937]
RGB画像からのHSI再構成のための相関連続性ネットワーク(CCNet)を提案する。
局所スペクトルの相関について,GrSCM(Group-wise Spectral correlation Modeling)モジュールを紹介する。
グローバルスペクトルの連続性のために、我々はNeSCMモジュールを設計する。
論文 参考訳(メタデータ) (2025-01-02T15:14:40Z) - Detail Matters: Mamba-Inspired Joint Unfolding Network for Snapshot Spectral Compressive Imaging [40.80197280147993]
本研究では,HSI再建の非線形および不適切な特徴を克服するために,マンバインスパイアされたジョイント・アンフォールディング・ネットワーク(MiJUN)を提案する。
本稿では,初期最適化段階への依存を減らすために,高速化された展開ネットワーク方式を提案する。
テンソルモード-$k$展開をMambaネットワークに統合することにより,Mambaによる走査戦略を洗練する。
論文 参考訳(メタデータ) (2025-01-02T13:56:23Z) - HDMba: Hyperspectral Remote Sensing Imagery Dehazing with State Space Model [9.42497788563994]
ハイパースペクトルリモートセンシング画像(HSI)のヘイズは、空間的な可視性劣化とスペクトル歪みを引き起こす。
我々は、ウィンドウ内のローカル依存関係をキャプチャする新しいウィンドウ選択スキャンモジュール(WSSM)を開発した。
局所的および大域的スペクトル空間情報フローをモデル化することにより,ハジー領域の包括的解析を実現する。
Gaofen-5 HSIデータセットの実験結果から、HDMbaは他の最先端手法よりも性能が優れていることが示された。
論文 参考訳(メタデータ) (2024-06-09T08:53:02Z) - Frequency-Assisted Mamba for Remote Sensing Image Super-Resolution [49.902047563260496]
我々は、リモートセンシング画像(RSI)の超高解像度化のために、視覚状態空間モデル(Mamba)を統合するための最初の試みを開発した。
より優れたSR再構築を実現するため,FMSRと呼ばれる周波数支援型Mambaフレームワークを考案した。
我々のFMSRは、周波数選択モジュール(FSM)、ビジョン状態空間モジュール(VSSM)、ハイブリッドゲートモジュール(HGM)を備えた多層融合アーキテクチャを備えている。
論文 参考訳(メタデータ) (2024-05-08T11:09:24Z) - SSUMamba: Spatial-Spectral Selective State Space Model for Hyperspectral Image Denoising [13.1240990099267]
HSI復調のためのメモリ効率の良い空間スペクトル(SSUMamba)を導入する。
Mambaは、その顕著な長距離依存性モデリング機能で知られている。
SSUMambaは、トランスフォーマーベースの手法に比べて、バッチ当たりのメモリ消費が低い優れたデノナイズ結果が得られる。
論文 参考訳(メタデータ) (2024-05-02T20:44:26Z) - Hyperspectral Image Super-Resolution via Dual-domain Network Based on
Hybrid Convolution [6.3814314790000415]
本稿ではハイブリッド畳み込み(SRDNet)に基づく新しいHSI超解像アルゴリズムを提案する。
スペクトル間自己相似性を捉えるため、空間領域に自己注意学習機構(HSL)を考案する。
HSIの知覚品質をさらに向上するため、周波数領域のモデルを最適化するために周波数損失(HFL)を導入した。
論文 参考訳(メタデータ) (2023-04-10T13:51:28Z) - Spectral Enhanced Rectangle Transformer for Hyperspectral Image
Denoising [64.11157141177208]
ハイパースペクトル画像の空間的およびスペクトル的相関をモデル化するスペクトル拡張矩形変換器を提案する。
前者に対しては、長方形自己アテンションを水平および垂直に利用し、空間領域における非局所的類似性を捉える。
後者のために,空間スペクトル立方体の大域的低ランク特性を抽出し,雑音を抑制するスペクトル拡張モジュールを設計する。
論文 参考訳(メタデータ) (2023-04-03T09:42:13Z) - HDNet: High-resolution Dual-domain Learning for Spectral Compressive
Imaging [138.04956118993934]
HSI再構成のための高分解能デュアルドメイン学習ネットワーク(HDNet)を提案する。
一方、高効率な特徴融合によるHR空間スペクトルアテンションモジュールは、連続的かつ微細な画素レベルの特徴を提供する。
一方、HSI再構成のために周波数領域学習(FDL)を導入し、周波数領域の差を狭める。
論文 参考訳(メタデータ) (2022-03-04T06:37:45Z) - Mask-guided Spectral-wise Transformer for Efficient Hyperspectral Image
Reconstruction [127.20208645280438]
ハイパースペクトル画像(HSI)再構成は、2次元計測から3次元空間スペクトル信号を復元することを目的としている。
スペクトル間相互作用のモデル化は、HSI再構成に有用である。
Mask-guided Spectral-wise Transformer (MST) は,HSI再構成のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-11-15T16:59:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。