Pedestrian intention prediction in Adverse Weather Conditions with Spiking Neural Networks and Dynamic Vision Sensors
- URL: http://arxiv.org/abs/2406.00473v1
- Date: Sat, 1 Jun 2024 15:58:24 GMT
- Title: Pedestrian intention prediction in Adverse Weather Conditions with Spiking Neural Networks and Dynamic Vision Sensors
- Authors: Mustafa Sakhai, Szymon Mazurek, Jakub Caputa, Jan K. ArgasiĆski, Maciej Wielgosz,
- Abstract summary: This study examines the effectiveness of Spiking Neural Networks (SNNs) paired with Dynamic Vision Sensors (DVS) to improve pedestrian detection in adverse weather.
We assess the efficiency of SNNs compared to traditional Convolutional Neural Networks (CNNs)
The results indicate that SNNs, integrated with DVS, significantly reduce computational overhead and improve detection accuracy in challenging conditions compared to CNNs.
- Score: 0.0699049312989311
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study examines the effectiveness of Spiking Neural Networks (SNNs) paired with Dynamic Vision Sensors (DVS) to improve pedestrian detection in adverse weather, a significant challenge for autonomous vehicles. Utilizing the high temporal resolution and low latency of DVS, which excels in dynamic, low-light, and high-contrast environments, we assess the efficiency of SNNs compared to traditional Convolutional Neural Networks (CNNs). Our experiments involved testing across diverse weather scenarios using a custom dataset from the CARLA simulator, mirroring real-world variability. SNN models, enhanced with Temporally Effective Batch Normalization, were trained and benchmarked against state-of-the-art CNNs to demonstrate superior accuracy and computational efficiency in complex conditions such as rain and fog. The results indicate that SNNs, integrated with DVS, significantly reduce computational overhead and improve detection accuracy in challenging conditions compared to CNNs. This highlights the potential of DVS combined with bio-inspired SNN processing to enhance autonomous vehicle perception and decision-making systems, advancing intelligent transportation systems' safety features in varying operational environments. Additionally, our research indicates that SNNs perform more efficiently in handling long perception windows and prediction tasks, rather than simple pedestrian detection.
Related papers
- Brain-Inspired Online Adaptation for Remote Sensing with Spiking Neural Network [17.315710646752176]
This work proposes an online adaptation framework based on spiking neural networks (SNNs) for remote sensing.
To our knowledge, this work is the first to address the online adaptation of SNNs.
The proposed method enables energy-efficient and fast online adaptation on edge devices, and has much potential in applications such as remote perception on on-orbit satellites and UAV.
arXiv Detail & Related papers (2024-09-03T08:47:53Z) - sVAD: A Robust, Low-Power, and Light-Weight Voice Activity Detection
with Spiking Neural Networks [51.516451451719654]
Spiking Neural Networks (SNNs) are known to be biologically plausible and power-efficient.
This paper introduces a novel SNN-based Voice Activity Detection model, referred to as sVAD.
It provides effective auditory feature representation through SincNet and 1D convolution, and improves noise robustness with attention mechanisms.
arXiv Detail & Related papers (2024-03-09T02:55:44Z) - Efficient and Effective Time-Series Forecasting with Spiking Neural Networks [47.371024581669516]
Spiking neural networks (SNNs) provide a unique pathway for capturing the intricacies of temporal data.
Applying SNNs to time-series forecasting is challenging due to difficulties in effective temporal alignment, complexities in encoding processes, and the absence of standardized guidelines for model selection.
We propose a framework for SNNs in time-series forecasting tasks, leveraging the efficiency of spiking neurons in processing temporal information.
arXiv Detail & Related papers (2024-02-02T16:23:50Z) - Autonomous Driving using Spiking Neural Networks on Dynamic Vision
Sensor Data: A Case Study of Traffic Light Change Detection [0.0]
Spiking neural networks (SNNs) provide an alternative model to process information and make decisions.
Recent work using SNNs for autonomous driving mostly focused on simple tasks like lane keeping in simplified simulation environments.
This project studies SNNs on photo-realistic driving scenes in the CARLA simulator, which is an important step toward using SNNs on real vehicles.
arXiv Detail & Related papers (2023-09-27T23:31:30Z) - Low Latency of object detection for spikng neural network [3.404826786562694]
Spiking Neural Networks are well-suited for edge AI applications due to their binary spike nature.
In this paper, we focus on generating highly accurate and low-latency SNNs specifically for object detection.
arXiv Detail & Related papers (2023-09-27T10:26:19Z) - STCSNN: High energy efficiency spike-train level spiking neural networks with spatio-temporal conversion [4.892303151981707]
Brain-temporal spiking neuron networks (SNNs) have attracted widespread research interest due to their low power features, high biological plausibility, and strong information processing capability.
Although adopting a surrogate (SG) makes the non-differentiability SNN trainable, achieving comparable accuracy for ANNs and keeping low-power features simultaneously is still tricky.
In this paper, we proposed an energy-efficient spiking neural network withtemporal conversion, which has low computational cost and high accuracy.
arXiv Detail & Related papers (2023-07-14T03:27:34Z) - Adaptive-SpikeNet: Event-based Optical Flow Estimation using Spiking
Neural Networks with Learnable Neuronal Dynamics [6.309365332210523]
Spiking Neural Networks (SNNs) with their neuro-inspired event-driven processing can efficiently handle asynchronous data.
We propose an adaptive fully-spiking framework with learnable neuronal dynamics to alleviate the spike vanishing problem.
Our experiments on datasets show an average reduction of 13% in average endpoint error (AEE) compared to state-of-the-art ANNs.
arXiv Detail & Related papers (2022-09-21T21:17:56Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Temporal Pulses Driven Spiking Neural Network for Fast Object
Recognition in Autonomous Driving [65.36115045035903]
We propose an approach to address the object recognition problem directly with raw temporal pulses utilizing the spiking neural network (SNN)
Being evaluated on various datasets, our proposed method has shown comparable performance as the state-of-the-art methods, while achieving remarkable time efficiency.
arXiv Detail & Related papers (2020-01-24T22:58:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.