論文の概要: End-to-End Model-based Deep Learning for Dual-Energy Computed Tomography Material Decomposition
- arxiv url: http://arxiv.org/abs/2406.00479v1
- Date: Sat, 1 Jun 2024 16:20:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 06:55:04.486791
- Title: End-to-End Model-based Deep Learning for Dual-Energy Computed Tomography Material Decomposition
- Title(参考訳): Dual-Energy Computed Tomography 材料分解のためのエンド・ツー・エンドモデルに基づく深層学習
- Authors: Jiandong Wang, Alessandro Perelli,
- Abstract要約: 本稿では,定量化のためのエンド・ツー・エンド材料分解(E2E-DEcomp)と呼ばれる深層学習手法を提案する。
AAPMスペクトルCTデータセットにおける直接E2E-DEcomp法の有効性を示す。
- 参考スコア(独自算出の注目度): 53.14236375171593
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dual energy X-ray Computed Tomography (DECT) enables to automatically decompose materials in clinical images without the manual segmentation using the dependency of the X-ray linear attenuation with energy. In this work we propose a deep learning procedure called End-to-End Material Decomposition (E2E-DEcomp) for quantitative material decomposition which directly convert the CT projection data into material images. The algorithm is based on incorporating the knowledge of the spectral model DECT system into the deep learning training loss and combining a data-learned prior in the material image domain. Furthermore, the training does not require any energy-based images in the dataset but rather only sinogram and material images. We show the effectiveness of the proposed direct E2E-DEcomp method on the AAPM spectral CT dataset (Sidky and Pan, 2023) compared with state of the art supervised deep learning networks.
- Abstract(参考訳): Dual Energy X-ray Computed Tomography (DECT) は、X線線形減衰のエネルギー依存性を利用して、手動セグメンテーションなしで臨床画像中の物質を自動的に分解することができる。
本研究では,CTプロジェクションデータを直接材料画像に変換する定量的な材料分解のための,End-to-End Material Decomposition (E2E-DEcomp) と呼ばれる深層学習手法を提案する。
このアルゴリズムは、スペクトルモデルDECTシステムの知識を深層学習訓練損失に取り入れ、物質画像領域に先行するデータ学習を組み合わせたものである。
さらに、トレーニングはデータセット内のエネルギーベースのイメージを必要としない。
我々は,AAPMスペクトルCTデータセット(Sidky and Pan, 2023)における直接E2E-DEcomp法の有効性を,最先端の教師付きディープラーニングネットワークと比較した。
関連論文リスト
- CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - Quantum optimization algorithms for CT image segmentation from X-ray
data [0.0]
本稿では,2次非制約二元最適化(QUBO)と呼ばれる高度な量子最適化アルゴリズムを用いた新しい手法を提案する。
ラドン変換を用いて、実験的に得られたシングラムと量子化されたセグメンテーションCT画像から得られた量子化されたシングラムとの差を最小限に抑えたX線投影データからのセグメンテーションCT画像の取得を可能にする。
本研究は,実世界のX線データの検証にD-Waveのハイブリッドソルバシステムを利用した。
論文 参考訳(メタデータ) (2023-06-08T19:37:43Z) - Deep Learning for Material Decomposition in Photon-Counting CT [0.5801044612920815]
そこで本研究では,PCCTにおける材料分解のための新たな深層学習ソリューションを提案する。
提案手法は,最大推定値,変分法,および完全学習ネットワークよりも優れる。
論文 参考訳(メタデータ) (2022-08-05T19:05:16Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
我々は,多チャンネル畳み込み解析演算子学習法(MCAOL)を開発した。
本研究では,低エネルギー,高エネルギーで減衰画像を共同で再構成する最適化手法を提案する。
論文 参考訳(メタデータ) (2022-03-10T14:22:54Z) - Spectral image clustering on dual-energy CT scans using functional
regression mixtures [12.194046749285425]
デュアルエネルギーCT(Dual-Energy Computed Tomography、DECT)は、従来のCTスキャンでは不可能な材料特性評価が可能な高度なCTスキャン技術である。
これにより、各3次元画像ボクセルにおけるエネルギー減衰曲線の再構成が可能になり、異なる有効エネルギーレベルでの様々な画像減衰を表す。
論文 参考訳(メタデータ) (2022-01-31T18:04:43Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
InDuDoNet+と呼ばれる新しい解釈可能な二重ドメインネットワークを構築し、CT画像の微細な埋め込みを行う。
異なる組織間のCT値を分析し,InDuDoNet+の事前観測ネットワークにマージすることで,その一般化性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-12-23T15:52:37Z) - Deep Sinogram Completion with Image Prior for Metal Artifact Reduction
in CT Images [29.019325663195627]
CTは, 診断, 評価, 治療計画, 指導に広く用いられている。
CT画像は金属の物体の存在に悪影響を及ぼし、重金属の破片につながる可能性がある。
本稿では, 画像領域とシノグラム領域に基づくMAR技術の利点を同時に活用して, 金属アーティファクト低減(MAR)の一般化可能なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-16T04:43:35Z) - Fed-Sim: Federated Simulation for Medical Imaging [131.56325440976207]
本稿では、2つの学習可能なニューラルモジュールからなる物理駆動型生成手法を提案する。
データ合成フレームワークは、複数のデータセットの下流セグメンテーション性能を改善する。
論文 参考訳(メタデータ) (2020-09-01T19:17:46Z) - X-ray Photon-Counting Data Correction through Deep Learning [3.535670189300134]
深層ニューラルネットワークを用いたPCDデータ補正手法を提案する。
本研究ではまず,電荷分割とパルス蓄積効果を取り入れた完全シミュレーションモデルを構築した。
シミュレーションされたPCDデータと地上の真理のデータは、PCDデータ修正のために特別に設計されたディープ・敵ネットワークに送られる。
論文 参考訳(メタデータ) (2020-07-06T23:29:16Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。