論文の概要: MaskTerial: A Foundation Model for Automated 2D Material Flake Detection
- arxiv url: http://arxiv.org/abs/2412.09333v1
- Date: Thu, 12 Dec 2024 15:01:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:30:50.735506
- Title: MaskTerial: A Foundation Model for Automated 2D Material Flake Detection
- Title(参考訳): MaskTerial:2次元材料火炎自動検出の基礎モデル
- Authors: Jan-Lucas Uslu, Alexey Nekrasov, Alexander Hermans, Bernd Beschoten, Bastian Leibe, Lutz Waldecker, Christoph Stampfer,
- Abstract要約: MaskTerialと呼ばれる深層学習モデルを提案する。このモデルでは、インスタンスセグメンテーションネットワークを用いて、2D素材のフレークを確実に識別する。
このモデルは、ラベルのないデータからリアルな顕微鏡画像を生成する合成データ生成装置を用いて、広範囲に事前訓練されている。
六方晶窒化ホウ素などの低コントラスト材料の検出において,既存の技術よりも顕著な改善が認められた。
- 参考スコア(独自算出の注目度): 48.73213960205105
- License:
- Abstract: The detection and classification of exfoliated two-dimensional (2D) material flakes from optical microscope images can be automated using computer vision algorithms. This has the potential to increase the accuracy and objectivity of classification and the efficiency of sample fabrication, and it allows for large-scale data collection. Existing algorithms often exhibit challenges in identifying low-contrast materials and typically require large amounts of training data. Here, we present a deep learning model, called MaskTerial, that uses an instance segmentation network to reliably identify 2D material flakes. The model is extensively pre-trained using a synthetic data generator, that generates realistic microscopy images from unlabeled data. This results in a model that can to quickly adapt to new materials with as little as 5 to 10 images. Furthermore, an uncertainty estimation model is used to finally classify the predictions based on optical contrast. We evaluate our method on eight different datasets comprising five different 2D materials and demonstrate significant improvements over existing techniques in the detection of low-contrast materials such as hexagonal boron nitride.
- Abstract(参考訳): 光学顕微鏡画像から剥離した2次元材料フレークの検出と分類をコンピュータビジョンアルゴリズムを用いて自動化することができる。
これは、分類の正確さと客観性、サンプル作製の効率を高める可能性があり、大規模なデータ収集を可能にする。
既存のアルゴリズムは、しばしば低コントラスト材料を特定する際の課題を示し、通常大量のトレーニングデータを必要とする。
本稿では,2次元材料フレークを確実に識別するために,インスタンスセグメンテーションネットワークを用いた深層学習モデルMaskTerialを提案する。
このモデルは、ラベルのないデータからリアルな顕微鏡画像を生成する合成データ生成装置を用いて、広範囲に事前訓練されている。
これにより、5から10枚の画像しか持たない新しい素材に迅速に適応できるモデルが出来上がる。
さらに、光学コントラストに基づいて予測を最終的に分類するために不確実性推定モデルを用いる。
本研究では, 六方晶窒化ホウ素などの低コントラスト材料の検出において, 5つの異なる2次元材料からなる8種類のデータセットについて評価し, 既存の技術よりも大幅に改善したことを示す。
関連論文リスト
- Synthetic imagery for fuzzy object detection: A comparative study [3.652647451754697]
ファジィ物体検出はコンピュータビジョン(CV)研究の難しい分野である
火、煙、霧、蒸気のようなファジィな物体は、視覚的特徴の点で非常に複雑である。
完全合成火災画像の生成と自動アノテートのための代替手法を提案し,活用する。
論文 参考訳(メタデータ) (2024-10-01T23:22:54Z) - Automated Segmentation and Analysis of Microscopy Images of Laser Powder Bed Fusion Melt Tracks [0.0]
断面画像から溶融トラック次元を自動的に識別し,計測する画像分割ニューラルネットワークを提案する。
我々は、U-Netアーキテクチャを用いて、異なる研究室、機械、材料から得られた62個の事前ラベル付き画像のデータセットと、画像拡張を併用したトレーニングを行う。
論文 参考訳(メタデータ) (2024-09-26T22:44:00Z) - End-to-End Model-based Deep Learning for Dual-Energy Computed Tomography Material Decomposition [53.14236375171593]
本稿では,定量化のためのエンド・ツー・エンド材料分解(E2E-DEcomp)と呼ばれる深層学習手法を提案する。
AAPMスペクトルCTデータセットにおける直接E2E-DEcomp法の有効性を示す。
論文 参考訳(メタデータ) (2024-06-01T16:20:59Z) - Intrinsic Image Diffusion for Indoor Single-view Material Estimation [55.276815106443976]
室内シーンの外観分解のための生成モデルIntrinsic Image Diffusionを提案する。
1つの入力ビューから、アルベド、粗さ、および金属地図として表される複数の材料説明をサンプリングする。
提案手法は,PSNRで1.5dB$,アルベド予測で45%のFIDスコアを達成し,よりシャープで,より一貫性があり,より詳細な資料を生成する。
論文 参考訳(メタデータ) (2023-12-19T15:56:19Z) - Randomize to Generalize: Domain Randomization for Runway FOD Detection [1.4249472316161877]
細い物体検出は、小型化、低解像度化、オクルージョン化、背景クラッタ、照明条件、被写体対画像比の小さいため困難である。
本稿では,SRIA(Synthetic Image Augmentation)の新たな2段階手法を提案する。
検出精度は初期41%からOODテストセットの92%に改善した。
論文 参考訳(メタデータ) (2023-09-23T05:02:31Z) - Defect Classification in Additive Manufacturing Using CNN-Based Vision
Processing [76.72662577101988]
本稿では、まず、畳み込みニューラルネットワーク(CNN)を用いて、画像データセットの欠陥をAMから第2に正確に分類し、発達した分類モデルにアクティブラーニング技術を適用する。
これにより、トレーニングデータやトレーニングデータの生成に必要なデータのサイズを削減できる、ヒューマン・イン・ザ・ループ機構の構築が可能になる。
論文 参考訳(メタデータ) (2023-07-14T14:36:58Z) - Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images [68.8204255655161]
同様のレベルの遺伝子発現を持つ顕微鏡画像の領域を検出・分類するためのディープラーニングフレームワークを提案する。
分析するデータには教師なし学習モデルが必要です。
論文 参考訳(メタデータ) (2023-04-19T13:45:28Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
リソグラフィーモデリングは、チップ設計マスクが製造可能であることを保証するため、チップ設計において重要な問題である。
機械学習の最近の進歩は、時間を要するリソグラフィーシミュレーションをディープニューラルネットワークに置き換えるための代替ソリューションを提供している。
本稿では,限られたデータのジレンマを解消し,機械学習モデルの性能を向上させるために,データ拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-27T20:53:39Z) - Performance, Successes and Limitations of Deep Learning Semantic
Segmentation of Multiple Defects in Transmission Electron Micrographs [9.237363938772479]
深層学習Mask Regional Convolutional Neural Network (Mask R-CNN)モデルを用いて, 電子顕微鏡によるFeCrAl合金の欠陥のセマンティックセグメンテーションを行う。
本稿では, 欠陥形状の予測分布, 欠陥サイズ, 欠陥同感度などの量に着目し, キーモデルの性能統計の詳細な分析を行う。
全体として、現在のモデルは、顕微鏡画像中の複数の欠陥タイプを自動解析し、定量化するための、高速で効果的なツールであることがわかった。
論文 参考訳(メタデータ) (2021-10-15T17:57:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。