論文の概要: Optimistic Rates for Learning from Label Proportions
- arxiv url: http://arxiv.org/abs/2406.00487v1
- Date: Sat, 1 Jun 2024 16:36:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 06:45:16.892002
- Title: Optimistic Rates for Learning from Label Proportions
- Title(参考訳): ラベル分布から学ぶための最適率
- Authors: Gene Li, Lin Chen, Adel Javanmard, Vahab Mirrokni,
- Abstract要約: 事例を袋にまとめるLLP(Learning from Label Proportions)という,弱教師付き学習問題を考える。」
分類損失に対するPAC学習保証を実現するLLPの学習ルールについて検討した。
- 参考スコア(独自算出の注目度): 19.980594971351014
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider a weakly supervised learning problem called Learning from Label Proportions (LLP), where examples are grouped into ``bags'' and only the average label within each bag is revealed to the learner. We study various learning rules for LLP that achieve PAC learning guarantees for classification loss. We establish that the classical Empirical Proportional Risk Minimization (EPRM) learning rule (Yu et al., 2014) achieves fast rates under realizability, but EPRM and similar proportion matching learning rules can fail in the agnostic setting. We also show that (1) a debiased proportional square loss, as well as (2) a recently proposed EasyLLP learning rule (Busa-Fekete et al., 2023) both achieve ``optimistic rates'' (Panchenko, 2002); in both the realizable and agnostic settings, their sample complexity is optimal (up to log factors) in terms of $\epsilon, \delta$, and VC dimension.
- Abstract(参考訳): 本稿では,Learning from Label Proportions (LLP) と呼ばれる弱い教師付き学習問題を考察し,サンプルを ``bags' にグループ化し,各バッグ内の平均ラベルのみを学習者に開示する。
分類損失に対するPAC学習保証を実現するLLPの学習ルールについて検討した。
古典的経験的比例的リスク最小化(EPRM)学習規則(Yu et al , 2014)は、実現可能性の低い速さで達成されるが、EPRMと類似の比率の学習規則は、不可知的に失敗する可能性がある。
また,(1)非偏差比例2乗損失,(2)最近提案されたEasyLLP学習規則(Busa-Fekete et al , 2023)が'最適化率'(Panchenko, 2002)を達成すること,また,実現可能かつ不可知的な設定においても,サンプルの複雑さは$\epsilon, \delta$, VC次元の点で最適であることを示す。
関連論文リスト
- Learning with Complementary Labels Revisited: The Selected-Completely-at-Random Setting Is More Practical [66.57396042747706]
補完ラベル学習は、弱教師付き学習問題である。
均一分布仮定に依存しない一貫したアプローチを提案する。
相補的なラベル学習は、負のラベル付きバイナリ分類問題の集合として表現できる。
論文 参考訳(メタデータ) (2023-11-27T02:59:17Z) - Robust Representation Learning for Unreliable Partial Label Learning [86.909511808373]
部分ラベル学習(Partial Label Learning, PLL)は、弱い教師付き学習の一種で、各トレーニングインスタンスに候補ラベルのセットが割り当てられる。
これはUn Reliable partial Label Learning (UPLL) と呼ばれ、部分ラベルの本質的な信頼性の欠如とあいまいさにより、さらなる複雑さをもたらす。
本研究では,信頼できない部分ラベルに対するモデル強化を支援するために,信頼性に欠けるコントラスト学習を活用するUnreliability-Robust Representation Learning framework(URRL)を提案する。
論文 参考訳(メタデータ) (2023-08-31T13:37:28Z) - A Universal Unbiased Method for Classification from Aggregate
Observations [115.20235020903992]
本稿では,任意の損失に対する分類リスクを非バイアスで推定するCFAOの普遍的手法を提案する。
提案手法は,非バイアスリスク推定器によるリスクの整合性を保証するだけでなく,任意の損失に対応できる。
論文 参考訳(メタデータ) (2023-06-20T07:22:01Z) - Easy Learning from Label Proportions [17.71834385754893]
Easyllpは、アグリゲーションラベルに基づいた、柔軟で簡単に実装可能なデバイアス方式である。
我々の手法は、任意のモデルが個々のレベルで予想される損失を正確に見積もることができる。
論文 参考訳(メタデータ) (2023-02-06T20:41:38Z) - Learning from Label Proportions by Learning with Label Noise [30.7933303912474]
ラベル比例(LLP)からの学習は、データポイントをバッグに分類する弱い教師付き分類問題である。
ラベル雑音による学習の低減に基づくLLPに対する理論的基礎的なアプローチを提案する。
このアプローチは、複数のデータセットやアーキテクチャにわたるディープラーニングシナリオにおける経験的パフォーマンスの向上を実証する。
論文 参考訳(メタデータ) (2022-03-04T18:52:21Z) - Leveraged Weighted Loss for Partial Label Learning [64.85763991485652]
部分ラベル学習は、各インスタンスに候補ラベルのセットが割り当てられるデータを扱うが、そのうちの1つだけが真実である。
部分ラベルからの学習に関する多くの方法論の研究にもかかわらず、リスク一貫した性質に関する理論的理解はいまだに欠けている。
本稿では,テキスト重み付き損失(LW)と呼ばれる損失関数のファミリーを提案する。これはまず,部分ラベル上の損失と非部分的な損失とのトレードオフを検討するために,レバレッジパラメータ$beta$を導入する。
論文 参考訳(メタデータ) (2021-06-10T13:25:13Z) - Probably Approximately Correct Constrained Learning [135.48447120228658]
我々は、ほぼ正しい学習フレームワーク(PAC)に基づく一般化理論を開発する。
PAC学習可能なクラスも制約のある学習者であるという意味では,学習者の導入は学習問題を難しくするものではないことを示す。
このソリューションの特性を分析し,制約付き学習が公平でロバストな分類における問題にどのように対処できるかを説明する。
論文 参考訳(メタデータ) (2020-06-09T19:59:29Z) - On the Complexity of Learning from Label Proportions [4.111899441919163]
ラベル付学習データを用いてラベル比率で学習する問題について検討する。
この学習モデルは、投票者による政治選挙における候補者の投票数を予測することを含む、幅広い設定に適用できる。
意外なことに、有限VCクラスでは、LPPが効率的に学習できることは、PACで効率的に学習できることの厳密なサブセットであることを示している。
論文 参考訳(メタデータ) (2020-04-07T16:15:22Z) - Progressive Identification of True Labels for Partial-Label Learning [112.94467491335611]
部分ラベル学習(Partial-label Learning, PLL)は、典型的な弱教師付き学習問題であり、各トレーニングインスタンスには、真のラベルである候補ラベルのセットが設けられている。
既存のほとんどの手法は、特定の方法で解決しなければならない制約付き最適化として精巧に設計されており、計算複雑性をビッグデータにスケールアップするボトルネックにしている。
本稿では,モデルと最適化アルゴリズムの柔軟性を備えた分類器の新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T08:35:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。