論文の概要: Learning Background Prompts to Discover Implicit Knowledge for Open Vocabulary Object Detection
- arxiv url: http://arxiv.org/abs/2406.00510v1
- Date: Sat, 1 Jun 2024 17:32:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 06:35:32.669000
- Title: Learning Background Prompts to Discover Implicit Knowledge for Open Vocabulary Object Detection
- Title(参考訳): オープンな語彙オブジェクト検出のための暗黙の知識発見のためのバックグラウンドプロンプト
- Authors: Jiaming Li, Jiacheng Zhang, Jichang Li, Ge Li, Si Liu, Liang Lin, Guanbin Li,
- Abstract要約: Open vocabulary Object Detection (OVD) は、ベースと新規の両方のカテゴリからオブジェクトを認識できる最適なオブジェクト検出器を求めることを目的としている。
近年の進歩は、知識蒸留を利用して、事前訓練された大規模視覚言語モデルからオブジェクト検出のタスクに洞察力のある知識を伝達している。
本稿では,暗黙的背景知識を活用するための学習バックグラウンドプロンプトを提案するため,LBPと呼ばれる新しいOVDフレームワークを提案する。
- 参考スコア(独自算出の注目度): 101.15777242546649
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Open vocabulary object detection (OVD) aims at seeking an optimal object detector capable of recognizing objects from both base and novel categories. Recent advances leverage knowledge distillation to transfer insightful knowledge from pre-trained large-scale vision-language models to the task of object detection, significantly generalizing the powerful capabilities of the detector to identify more unknown object categories. However, these methods face significant challenges in background interpretation and model overfitting and thus often result in the loss of crucial background knowledge, giving rise to sub-optimal inference performance of the detector. To mitigate these issues, we present a novel OVD framework termed LBP to propose learning background prompts to harness explored implicit background knowledge, thus enhancing the detection performance w.r.t. base and novel categories. Specifically, we devise three modules: Background Category-specific Prompt, Background Object Discovery, and Inference Probability Rectification, to empower the detector to discover, represent, and leverage implicit object knowledge explored from background proposals. Evaluation on two benchmark datasets, OV-COCO and OV-LVIS, demonstrates the superiority of our proposed method over existing state-of-the-art approaches in handling the OVD tasks.
- Abstract(参考訳): Open vocabulary Object Detection (OVD) は、ベースと新規の両方のカテゴリからオブジェクトを認識できる最適なオブジェクト検出器を求めることを目的としている。
近年の進歩は、知識蒸留を利用して、事前訓練された大規模視覚言語モデルからオブジェクト検出のタスクに洞察力のある知識を伝達し、より未知のオブジェクトカテゴリを特定するための検出器の強力な能力を著しく一般化している。
しかし、これらの手法は背景解釈やモデルオーバーフィッティングにおいて重大な課題に直面しており、しばしば重要な背景知識が失われ、検出器の準最適推論性能がもたらされる。
これらの問題を緩和するために,LBP と呼ばれる新しい OVD フレームワークを提案する。
具体的には、バックグラウンドカテゴリ固有のPrompt、バックグラウンドオブジェクト発見、推論確率再現という3つのモジュールを考案し、バックグラウンド提案から探索された暗黙的なオブジェクト知識を発見し、表現し、活用する。
OV-COCOとOV-LVISという2つのベンチマークデータセットの評価は,OVDタスク処理における既存の最先端手法よりも提案手法の方が優れていることを示す。
関連論文リスト
- Open-World Object Detection with Instance Representation Learning [1.8749305679160366]
本研究では,新しい物体を検知し,オープンワールド条件下で意味的にリッチな特徴を抽出できる物体検知器の訓練手法を提案する。
提案手法は頑健で一般化可能な特徴空間を学習し,他のOWODに基づく特徴抽出法よりも優れている。
論文 参考訳(メタデータ) (2024-09-24T13:13:34Z) - MarvelOVD: Marrying Object Recognition and Vision-Language Models for Robust Open-Vocabulary Object Detection [107.15164718585666]
開語彙検出コンテキスト下でのVLMの偏り予測の根本原因について検討した。
私たちの観察は、非常に優れたトレーニングターゲットを生成する、単純で効果的なパラダイム、コード化されたMarvelOVDにつながります。
我々の手法は、他の最先端技術よりも大きなマージンで優れている。
論文 参考訳(メタデータ) (2024-07-31T09:23:57Z) - Active Object Detection with Knowledge Aggregation and Distillation from Large Models [5.669106489320257]
状態変化中のアクティブオブジェクトを正確に検出することは、人間のインタラクションを理解し、意思決定を容易にするために不可欠である。
既存のアクティブオブジェクト検出法(AOD)は主に、サイズ、形状、手との関係など、入力内のオブジェクトの視覚的外観に依存する。
状態変化は、しばしばオブジェクト上で実行される相互作用の結果であり、AODに対してより信頼性の高い手がかりを提供するために、オブジェクトに関連する可視的相互作用に関する情報的事前利用を提案する。
提案するフレームワークは,Ego4D,Epic-Kitchens,MECCANOの4つのデータセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2024-05-21T05:39:31Z) - DetCLIPv3: Towards Versatile Generative Open-vocabulary Object Detection [111.68263493302499]
DetCLIPv3は、オープンボキャブラリオブジェクト検出と階層ラベルの両方で優れた高性能検出器である。
DetCLIPv3は,1)Versatileモデルアーキテクチャ,2)高情報密度データ,3)効率的なトレーニング戦略の3つのコア設計によって特徴付けられる。
DetCLIPv3は、GLIPv2, GroundingDINO, DetCLIPv2をそれぞれ18.0/19.6/6 APで上回り、優れたオープン語彙検出性能を示す。
論文 参考訳(メタデータ) (2024-04-14T11:01:44Z) - Simple Image-level Classification Improves Open-vocabulary Object
Detection [27.131298903486474]
Open-Vocabulary Object Detection (OVOD) は、検出モデルが訓練された与えられたベースカテゴリのセットを超えて、新しいオブジェクトを検出することを目的としている。
近年のOVOD法は,CLIPなどの画像レベルの事前学習型視覚言語モデル(VLM)を,地域レベルの知識蒸留,地域レベルの学習,地域レベルの事前学習といった領域レベルのオブジェクト検出タスクに適応させることに重点を置いている。
これらの手法は、地域視覚概念の認識において顕著な性能を示してきたが、VLMの強力なグローバルシーン理解能力を活用するには弱い。
論文 参考訳(メタデータ) (2023-12-16T13:06:15Z) - The devil is in the fine-grained details: Evaluating open-vocabulary object detectors for fine-grained understanding [8.448399308205266]
本研究では,動的語彙生成に基づく評価プロトコルを導入し,モデルがオブジェクトに対して正確な粒度記述を検出し,識別し,割り当てるかどうかを検証する。
提案プロトコルを用いて,最先端のオープンボキャブラリオブジェクト検出器を複数評価することにより,研究をさらに強化する。
論文 参考訳(メタデータ) (2023-11-29T10:40:52Z) - CoTDet: Affordance Knowledge Prompting for Task Driven Object Detection [42.2847114428716]
タスク駆動オブジェクト検出は、イメージ内のタスクを提供するのに適したオブジェクトインスタンスを検出することを目的としている。
その課題は、従来のオブジェクト検出のためのクローズドなオブジェクト語彙に制限されるほど多様すぎるタスクのために利用できるオブジェクトカテゴリにある。
本稿では,オブジェクトカテゴリではなく,異なるオブジェクトが同じタスクを達成できる共通属性について検討する。
論文 参考訳(メタデータ) (2023-09-03T06:18:39Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
ジェネリックな方法でオブジェクトを発見できるため、教師なしのオブジェクト発見は有望である。
画像から高レベルな意味的特徴を抽出する意味誘導型自己教師学習モデルを設計する。
オブジェクト領域のローカライズのための主成分分析(PCA)を導入する。
論文 参考訳(メタデータ) (2023-07-07T04:03:48Z) - Open Vocabulary Object Detection with Proposal Mining and Prediction
Equalization [73.14053674836838]
Open-vocabulary Object Detection (OVD)は、学習語彙以外の新しいカテゴリのオブジェクトを検出するために、語彙サイズを拡大することを目的としている。
最近の研究は、事前訓練された視覚言語モデルにおける豊富な知識に頼っている。
本稿では,提案するマイニングと予測等化を備えた新しいOVDフレームワークMEDetを提案する。
論文 参考訳(メタデータ) (2022-06-22T14:30:41Z) - OW-DETR: Open-world Detection Transformer [90.56239673123804]
オープンワールドオブジェクト検出のための新しいエンドツーエンドトランスフォーマーベースのフレームワークOW-DETRを提案する。
OW-DETRは3つの専用コンポーネント、すなわち注目駆動の擬似ラベル、新規性分類、オブジェクトネススコアから構成される。
我々のモデルは、最近導入されたOWODアプローチであるOREよりも優れており、リコールの度合いは1.8%から3.3%である。
論文 参考訳(メタデータ) (2021-12-02T18:58:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。