論文の概要: Open-World Object Detection with Instance Representation Learning
- arxiv url: http://arxiv.org/abs/2409.16073v1
- Date: Tue, 24 Sep 2024 13:13:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 05:46:35.948051
- Title: Open-World Object Detection with Instance Representation Learning
- Title(参考訳): インスタンス表現学習を用いたオープンワールドオブジェクト検出
- Authors: Sunoh Lee, Minsik Jeon, Jihong Min, Junwon Seo,
- Abstract要約: 本研究では,新しい物体を検知し,オープンワールド条件下で意味的にリッチな特徴を抽出できる物体検知器の訓練手法を提案する。
提案手法は頑健で一般化可能な特徴空間を学習し,他のOWODに基づく特徴抽出法よりも優れている。
- 参考スコア(独自算出の注目度): 1.8749305679160366
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While humans naturally identify novel objects and understand their relationships, deep learning-based object detectors struggle to detect and relate objects that are not observed during training. To overcome this issue, Open World Object Detection(OWOD) has been introduced to enable models to detect unknown objects in open-world scenarios. However, OWOD methods fail to capture the fine-grained relationships between detected objects, which are crucial for comprehensive scene understanding and applications such as class discovery and tracking. In this paper, we propose a method to train an object detector that can both detect novel objects and extract semantically rich features in open-world conditions by leveraging the knowledge of Vision Foundation Models(VFM). We first utilize the semantic masks from the Segment Anything Model to supervise the box regression of unknown objects, ensuring accurate localization. By transferring the instance-wise similarities obtained from the VFM features to the detector's instance embeddings, our method then learns a semantically rich feature space of these embeddings. Extensive experiments show that our method learns a robust and generalizable feature space, outperforming other OWOD-based feature extraction methods. Additionally, we demonstrate that the enhanced feature from our model increases the detector's applicability to tasks such as open-world tracking.
- Abstract(参考訳): 人間は自然に新しい物体を識別し、それらの関係を理解する一方で、深層学習に基づく物体検出器は、訓練中に観察されていない物体を検出し、関連付けるのに苦労する。
この問題を解決するために、オープンワールドオブジェクト検出(OWOD)が導入された。
しかし、OWOD法は検出されたオブジェクト間のきめ細かい関係を捉えるのに失敗する。
本稿では,視覚基礎モデル(VFM)の知識を活用して,新しい物体を検知し,オープンワールドの環境において意味的に豊かな特徴を抽出できる物体検出装置の訓練手法を提案する。
まずSegment Anything Modelのセマンティックマスクを用いて、未知のオブジェクトのボックス回帰を監視し、正確なローカライゼーションを保証する。
VFM特徴量から得られたインスタンスの類似性を検出器のインスタンス埋め込みに転送することで,本手法はこれらの埋め込みのセマンティックにリッチな特徴空間を学習する。
大規模な実験により,本手法は頑健で一般化可能な特徴空間を学習し,他のOWODに基づく特徴抽出法よりも優れていた。
さらに,本モデルから拡張された特徴が,オープンワールドトラッキングなどのタスクへの適用性を高めることを実証した。
関連論文リスト
- Towards Open-World Object-based Anomaly Detection via Self-Supervised Outlier Synthesis [15.748043194987075]
この研究は、オープンワールドオブジェクト検出器とOoD検出器を仮想外周で活用することでギャップを埋めることを目的としている。
提案手法では,オブジェクト検出アーキテクチャ全体を拡張して,クラスラベルに依存することなく,異常に認識された特徴表現を学習する。
提案手法は,オブジェクトレベルの異常検出における最先端性能を確立し,自然画像の平均リコールスコアを5.4%以上向上させる。
論文 参考訳(メタデータ) (2024-07-22T16:16:38Z) - Open World Object Detection in the Era of Foundation Models [53.683963161370585]
5つの実世界のアプリケーション駆動データセットを含む新しいベンチマークを導入する。
本稿では,オープンワールドのための新しいオブジェクト検出モデル(FOMO)を提案する。
論文 参考訳(メタデータ) (2023-12-10T03:56:06Z) - ECEA: Extensible Co-Existing Attention for Few-Shot Object Detection [52.16237548064387]
Few-shot Object Detection (FSOD) は、非常に少数のアノテーション付きサンプルからオブジェクトを識別する。
近年のFSOD法の多くは、2段階の学習パラダイムを適用しており、このパラダイムは豊富なベースクラスから学んだ知識を、グローバルな特徴を学習することで、数発の検知を補助する。
本研究では,局所的な部分に応じて大域的オブジェクトを推論するための拡張可能共存注意(ECEA)モジュールを提案する。
論文 参考訳(メタデータ) (2023-09-15T06:55:43Z) - Unsupervised Recognition of Unknown Objects for Open-World Object
Detection [28.787586991713535]
Open-World Object Detection (OWOD) はオブジェクト検出問題を現実的でダイナミックなシナリオに拡張する。
現在のOWODモデル(OREやOW-DETRなど)は、高い客観性スコアを持つ擬似ラベル領域に注目する。
本稿では,未知の物体を認識するために,教師なしの識別モデルを学ぶ新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-31T08:17:29Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
ジェネリックな方法でオブジェクトを発見できるため、教師なしのオブジェクト発見は有望である。
画像から高レベルな意味的特徴を抽出する意味誘導型自己教師学習モデルを設計する。
オブジェクト領域のローカライズのための主成分分析(PCA)を導入する。
論文 参考訳(メタデータ) (2023-07-07T04:03:48Z) - Detecting the open-world objects with the help of the Brain [20.00772846521719]
Open World Object Detection (OWOD) は、新しいコンピュータビジョンタスクである。
OWODアルゴリズムは、目に見えない、未知のオブジェクトを検出し、それを漸進的に学習することが期待されている。
我々は、未知のラベルを単に生成することで、VLをオープンワールド検出器のBrain'として活用することを提案する。
論文 参考訳(メタデータ) (2023-03-21T06:44:02Z) - Open World DETR: Transformer based Open World Object Detection [60.64535309016623]
そこで我々は,Deformable DETRに基づくオープンワールドオブジェクト検出のための2段階学習手法Open World DETRを提案する。
モデルのクラス固有のコンポーネントを多視点の自己ラベル戦略と一貫性制約で微調整する。
提案手法は、他の最先端のオープンワールドオブジェクト検出方法よりも大きなマージンで優れている。
論文 参考訳(メタデータ) (2022-12-06T13:39:30Z) - Towards Open-Set Object Detection and Discovery [38.81806249664884]
我々は新しいタスク、すなわちOpen-Set Object Detection and Discovery(OSODD)を提案する。
本稿では、まずオープンセットオブジェクト検出器を用いて、未知のオブジェクトと未知のオブジェクトの両方を予測する2段階の手法を提案する。
そこで,予測対象を教師なしで表現し,未知対象の集合から新たなカテゴリを発見する。
論文 参考訳(メタデータ) (2022-04-12T08:07:01Z) - Contrastive Object Detection Using Knowledge Graph Embeddings [72.17159795485915]
一つのホットアプローチで学習したクラス埋め込みの誤差統計と、自然言語処理や知識グラフから意味的に構造化された埋め込みを比較した。
本稿では,キーポイントベースおよびトランスフォーマーベースオブジェクト検出アーキテクチャの知識埋め込み設計を提案する。
論文 参考訳(メタデータ) (2021-12-21T17:10:21Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
本稿では,超高アスペクト比,すなわちtextbfslender オブジェクトの特定タイプの検出について検討する。
古典的物体検出法では、細い物体に対してのみ評価される場合、COCO上の18.9%のmAPの劇的な低下が観察される。
論文 参考訳(メタデータ) (2020-11-17T09:39:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。