論文の概要: An Unsupervised Approach for Periodic Source Detection in Time Series
- arxiv url: http://arxiv.org/abs/2406.00566v1
- Date: Sat, 1 Jun 2024 22:23:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 06:15:52.122018
- Title: An Unsupervised Approach for Periodic Source Detection in Time Series
- Title(参考訳): 時系列における周期的音源検出のための教師なし手法
- Authors: Berken Utku Demirel, Christian Holz,
- Abstract要約: ノイズのある時系列データ内の周期的関心パターンの検出は、様々なタスクにおいて重要な役割を果たす。
既存の学習技術は、しばしば周期性を検出するためにラベルやクリーンな信号に頼っている。
本稿では,ラベルを使わずに時系列の周期性を検出する手法を提案する。
- 参考スコア(独自算出の注目度): 22.053675805215686
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Detection of periodic patterns of interest within noisy time series data plays a critical role in various tasks, spanning from health monitoring to behavior analysis. Existing learning techniques often rely on labels or clean versions of signals for detecting the periodicity, and those employing self-supervised learning methods are required to apply proper augmentations, which is already challenging for time series and can result in collapse -- all representations collapse to a single point due to strong augmentations. In this work, we propose a novel method to detect the periodicity in time series without the need for any labels or requiring tailored positive or negative data generation mechanisms with specific augmentations. We mitigate the collapse issue by ensuring the learned representations retain information from the original samples without imposing any random variance constraints on the batch. Our experiments in three time series tasks against state-of-the-art learning methods show that the proposed approach consistently outperforms prior works, achieving performance improvements of more than 45--50\%, showing its effectiveness. Code: https://github.com/eth-siplab/Unsupervised_Periodicity_Detection
- Abstract(参考訳): ノイズのある時系列データ内の周期的な関心パターンの検出は、健康モニタリングから行動分析まで、様々なタスクにおいて重要な役割を果たす。
既存の学習技術は、周期性を検出するためにラベルやクリーンな信号に頼りがちであり、自己教師付き学習手法を採用する者は、適切な拡張を適用する必要がある。
本研究では,ラベルを必要とせずに時系列の周期性を検出する手法を提案する。
バッチにランダムな分散制約を課すことなく、学習した表現が元のサンプルからの情報を保持することを保証することで、崩壊問題を緩和する。
最新の学習手法に対する3つの時系列タスクによる実験の結果,提案手法は従来よりも一貫して優れており,45~50倍以上の性能向上を実現し,その効果を示した。
コード:https://github.com/eth-siplab/Unsupervised_Periodicity_detection
関連論文リスト
- Deep Learning for Multivariate Time Series Imputation: A Survey [36.72913706617057]
本稿では,最近提案されたディープラーニング計算手法に関する総合的な調査を行う。
本稿では,本手法の分類法を提案し,その強度と限界を明らかにすることによって,これらの手法の構造化されたレビューを行う。
また、異なる手法の研究や下流タスクの強化を比較するための実証実験も行います。
論文 参考訳(メタデータ) (2024-02-06T15:03:53Z) - Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
ディープラーニングシステムは、一連のタスクから学ぶとき、破滅的な忘れがちだ。
問題を緩和するため、新しいタスクを学ぶ際に経験豊富なタスクのデータを再生する手法が提案されている。
しかし、メモリ制約やデータプライバシーの問題を考慮すると、実際には期待できない。
代替として、分類モデルからサンプルを反転させることにより、データフリーなデータ再生法を提案する。
論文 参考訳(メタデータ) (2024-01-12T12:51:12Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Finding Order in Chaos: A Novel Data Augmentation Method for Time Series
in Contrastive Learning [26.053496478247236]
準周期的時系列タスクのための新しいデータ拡張手法を提案する。
提案手法は,新しい手法を取り入れた,よく知られた混合手法に基づいている。
本稿では,心拍数推定,人的活動認識,心血管疾患検出の3つの課題について検討した。
論文 参考訳(メタデータ) (2023-09-23T17:42:13Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
時系列異常検出(TSAD)の主な課題は、多くの実生活シナリオにおいてラベル付きデータの欠如である。
既存の異常検出手法の多くは、教師なしの方法で非ラベル時系列の正常な振る舞いを学習することに焦点を当てている。
本稿では,時系列異常検出のためのエンドツーエンドの自己教師型コントラアスティブ表現学習手法を提案する。
論文 参考訳(メタデータ) (2023-08-18T04:45:56Z) - Enhancing Representation Learning for Periodic Time Series with Floss: A
Frequency Domain Regularization Approach [26.92614573306619]
本稿では、周波数領域における学習表現を自動的に正規化するFlossと呼ばれる教師なし手法を提案する。
我々は、Flossの有効性を示すために、一般的な時系列分類、予測、異常検出タスクについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-08-02T08:37:45Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
本稿では,推定故障時間ウィンドウに基づくリアクティブ異常検出のための反復ログ解析手法PULLを提案する。
我々の評価では、PULLは3つの異なるデータセットで10のベンチマークベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2023-01-25T16:34:43Z) - Tracking the risk of a deployed model and detecting harmful distribution
shifts [105.27463615756733]
実際には、デプロイされたモデルのパフォーマンスが大幅に低下しないという、良心的なシフトを無視することは理にかなっている。
我々は,警告を発射する有効な方法は,(a)良性な警告を無視しながら有害なシフトを検知し,(b)誤報率を増大させることなく,モデル性能の連続的なモニタリングを可能にすることを論じる。
論文 参考訳(メタデータ) (2021-10-12T17:21:41Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。