A Blueprint Architecture of Compound AI Systems for Enterprise
- URL: http://arxiv.org/abs/2406.00584v1
- Date: Sun, 2 Jun 2024 01:16:32 GMT
- Title: A Blueprint Architecture of Compound AI Systems for Enterprise
- Authors: Eser Kandogan, Sajjadur Rahman, Nikita Bhutani, Dan Zhang, Rafael Li Chen, Kushan Mitra, Sairam Gurajada, Pouya Pezeshkpour, Hayate Iso, Yanlin Feng, Hannah Kim, Chen Shen, Jin Wang, Estevam Hruschka,
- Abstract summary: We introduce a blueprint architecture for compound AI systems to operate in enterprise settings cost-effectively and feasibly.
Our proposed architecture aims for seamless integration with existing compute and data infrastructure, with stream'' serving as the key orchestration concept.
- Score: 18.109450556443782
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large Language Models (LLMs) have showcased remarkable capabilities surpassing conventional NLP challenges, creating opportunities for use in production use cases. Towards this goal, there is a notable shift to building compound AI systems, wherein LLMs are integrated into an expansive software infrastructure with many components like models, retrievers, databases and tools. In this paper, we introduce a blueprint architecture for compound AI systems to operate in enterprise settings cost-effectively and feasibly. Our proposed architecture aims for seamless integration with existing compute and data infrastructure, with ``stream'' serving as the key orchestration concept to coordinate data and instructions among agents and other components. Task and data planners, respectively, break down, map, and optimize tasks and data to available agents and data sources defined in respective registries, given production constraints such as accuracy and latency.
Related papers
- GenAgent: Build Collaborative AI Systems with Automated Workflow Generation -- Case Studies on ComfyUI [64.57616646552869]
This paper explores collaborative AI systems that use to enhance performance to integrate models, data sources, and pipelines to solve complex and diverse tasks.
We introduce GenAgent, an LLM-based framework that automatically generates complex, offering greater flexibility and scalability compared to monolithic models.
The results demonstrate that GenAgent outperforms baseline approaches in both run-level and task-level evaluations.
arXiv Detail & Related papers (2024-09-02T17:44:10Z) - MG-Verilog: Multi-grained Dataset Towards Enhanced LLM-assisted Verilog Generation [16.836658183451764]
Large Language Models (LLMs) have recently shown promise in streamlining hardware design processes by encapsulating vast amounts of domain-specific data.
Existing publicly available hardware datasets are often limited in size, complexity, or detail.
We propose a Multi-Grained-Verilog (MG-Verilog) dataset, which encompasses descriptions at various levels of detail and corresponding code samples.
arXiv Detail & Related papers (2024-07-02T03:21:24Z) - Institutional Platform for Secure Self-Service Large Language Model Exploration [0.0]
The paper outlines the system's architecture and key features, encompassing dataset curation, model training, secure inference, and text-based feature extraction.
The platform strives to deliver secure LLM services, emphasizing process and data isolation, end-to-end encryption, and role-based resource authentication.
arXiv Detail & Related papers (2024-02-01T10:58:10Z) - Serving Deep Learning Model in Relational Databases [70.53282490832189]
Serving deep learning (DL) models on relational data has become a critical requirement across diverse commercial and scientific domains.
We highlight three pivotal paradigms: The state-of-the-art DL-centric architecture offloads DL computations to dedicated DL frameworks.
The potential UDF-centric architecture encapsulates one or more tensor computations into User Defined Functions (UDFs) within the relational database management system (RDBMS)
arXiv Detail & Related papers (2023-10-07T06:01:35Z) - Bringing AI to the edge: A formal M&S specification to deploy effective
IoT architectures [0.0]
The Internet of Things is transforming our society, providing new services that improve the quality of life and resource management.
These applications are based on ubiquitous networks of multiple distributed devices, with limited computing resources and power.
New architectures such as fog computing are emerging to bring computing infrastructure closer to data sources.
arXiv Detail & Related papers (2023-05-11T21:29:58Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - CateCom: a practical data-centric approach to categorization of
computational models [77.34726150561087]
We present an effort aimed at organizing the landscape of physics-based and data-driven computational models.
We apply object-oriented design concepts and outline the foundations of an open-source collaborative framework.
arXiv Detail & Related papers (2021-09-28T02:59:40Z) - A Data-Centric Framework for Composable NLP Workflows [109.51144493023533]
Empirical natural language processing systems in application domains (e.g., healthcare, finance, education) involve interoperation among multiple components.
We establish a unified open-source framework to support fast development of such sophisticated NLP in a composable manner.
arXiv Detail & Related papers (2021-03-02T16:19:44Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z) - CAAI -- A Cognitive Architecture to Introduce Artificial Intelligence in
Cyber-Physical Production Systems [1.5701326192371183]
CAAI is a cognitive architecture for artificial intelligence in cyber-physical production systems.
The core of CAAI is a cognitive module that processes declarative goals of the user.
Constant observation and evaluation against performance criteria assess the performance of pipelines.
arXiv Detail & Related papers (2020-02-26T16:27:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.