WebShaper: Agentically Data Synthesizing via Information-Seeking Formalization
- URL: http://arxiv.org/abs/2507.15061v1
- Date: Sun, 20 Jul 2025 17:53:37 GMT
- Title: WebShaper: Agentically Data Synthesizing via Information-Seeking Formalization
- Authors: Zhengwei Tao, Jialong Wu, Wenbiao Yin, Junkai Zhang, Baixuan Li, Haiyang Shen, Kuan Li, Liwen Zhang, Xinyu Wang, Yong Jiang, Pengjun Xie, Fei Huang, Jingren Zhou,
- Abstract summary: WebShaper systematically formalizes IS tasks through set theory.<n>WebShaper achieves state-of-the-art performance among open-sourced IS agents on GAIA and WebWalkerQA benchmarks.
- Score: 68.46693401421923
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of Large Language Model (LLM)-powered agents has revolutionized artificial intelligence by enabling solutions to complex, open-ended tasks through web-based information-seeking (IS) capabilities. The scarcity of high-quality training data has limited the development of IS agents. Existing approaches typically adopt an information-driven paradigm that first collects web data and then generates questions based on the retrieval. However, this may lead to inconsistency between information structure and reasoning structure, question and answer. To mitigate, we propose a formalization-driven IS data synthesis framework WebShaper to construct a dataset. WebShaper systematically formalizes IS tasks through set theory. Central to the formalization is the concept of Knowledge Projections (KP), which enables precise control over reasoning structure by KP operation compositions. During synthesis, we begin by creating seed tasks, then use a multi-step expansion process. At each step, an agentic Expander expands the current formal question more complex with retrieval and validation tools based on our formalization. We train our model on the synthesized dataset. Experiment results demonstrate that WebShaper achieves state-of-the-art performance among open-sourced IS agents on GAIA and WebWalkerQA benchmarks.
Related papers
- AgenticData: An Agentic Data Analytics System for Heterogeneous Data [12.67277567222908]
AgenticData is an agentic data analytics system that allows users to pose natural language (NL) questions while autonomously analyzing data sources across multiple domains.<n>We propose a multi-agent collaboration strategy by utilizing a data profiling agent for discovering relevant data, a semantic cross-validation agent for iterative optimization based on feedback, and a smart memory agent for maintaining short-term context.
arXiv Detail & Related papers (2025-08-07T03:33:59Z) - WebSynthesis: World-Model-Guided MCTS for Efficient WebUI-Trajectory Synthesis [34.998277998052444]
We propose WebSynthesis, a novel framework for trajectory synthesis and training.<n>We show that an agent trained using WebSynthesis on a small-scale synthetic dataset achieves performance comparable to or even surpassing that of models trained on large-scale real-world data.
arXiv Detail & Related papers (2025-07-06T12:31:10Z) - WebSailor: Navigating Super-human Reasoning for Web Agent [72.5231321118689]
WebSailor is a complete post-training methodology designed to instill this crucial capability.<n>Our approach involves generating novel, high-uncertainty tasks through structured sampling and information obfuscation.<n>WebSailor significantly outperforms all opensource agents in complex information-seeking tasks.
arXiv Detail & Related papers (2025-07-03T12:59:07Z) - From Web Search towards Agentic Deep Research: Incentivizing Search with Reasoning Agents [96.65646344634524]
Large Language Models (LLMs), endowed with reasoning and agentic capabilities, are ushering in a new paradigm termed Agentic Deep Research.<n>We trace the evolution from static web search to interactive, agent-based systems that plan, explore, and learn.<n>We demonstrate that Agentic Deep Research not only significantly outperforms existing approaches, but is also poised to become the dominant paradigm for future information seeking.
arXiv Detail & Related papers (2025-06-23T17:27:19Z) - Deep Research Agents: A Systematic Examination And Roadmap [79.04813794804377]
Deep Research (DR) agents are designed to tackle complex, multi-turn informational research tasks.<n>In this paper, we conduct a detailed analysis of the foundational technologies and architectural components that constitute DR agents.
arXiv Detail & Related papers (2025-06-22T16:52:48Z) - Unleashing LLM Reasoning Capability via Scalable Question Synthesis from Scratch [54.12139707822201]
We propose ScaleQuest, a novel, scalable, and cost-effective data synthesis method.<n>By generating diverse questions from scratch, we produce a dataset of 1 million problem-solution pairs.<n>Our experiments demonstrate that models trained on our data outperform existing open-source datasets.
arXiv Detail & Related papers (2024-10-24T12:42:04Z) - Towards Human-Level Understanding of Complex Process Engineering Schematics: A Pedagogical, Introspective Multi-Agent Framework for Open-Domain Question Answering [0.0]
In the chemical and process industries, Process Flow Diagrams (PFDs) and Piping and Instrumentation Diagrams (P&IDs) are critical for design, construction, and maintenance.
Recent advancements in Generative AI have shown promise in understanding and interpreting process diagrams for Visual Question Answering (VQA)
We propose a secure, on-premises enterprise solution using a hierarchical, multi-agent Retrieval Augmented Generation (RAG) framework.
arXiv Detail & Related papers (2024-08-24T19:34:04Z) - Towards Realistic Synthetic User-Generated Content: A Scaffolding Approach to Generating Online Discussions [17.96479268328824]
We investigate the feasibility of creating realistic, large-scale synthetic datasets of user-generated content.
We propose a multi-step generation process, predicated on the idea of creating compact representations of discussion threads.
arXiv Detail & Related papers (2024-08-15T18:43:50Z) - InteractiveIE: Towards Assessing the Strength of Human-AI Collaboration
in Improving the Performance of Information Extraction [48.45550809455558]
We show how a proxy human-supervision on-the-fly (termed as InteractiveIE) can boost the performance of learning template based information extraction from documents.
Experiments on biomedical and legal documents, where obtaining training data is expensive, reveal encouraging trends of performance improvement using InteractiveIE over AI-only baseline.
arXiv Detail & Related papers (2023-05-24T02:53:22Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.