COS-Mix: Cosine Similarity and Distance Fusion for Improved Information Retrieval
- URL: http://arxiv.org/abs/2406.00638v1
- Date: Sun, 02 Jun 2024 06:48:43 GMT
- Title: COS-Mix: Cosine Similarity and Distance Fusion for Improved Information Retrieval
- Authors: Kush Juvekar, Anupam Purwar,
- Abstract summary: This study proposes a novel hybrid retrieval strategy for Retrieval-Augmented Generation (RAG)
Traditional cosine similarity measure is widely used to capture the similarity between vectors in high-dimensional spaces.
We incorporate cosine distance measures to provide a complementary perspective by quantifying the dissimilarity between vectors.
- Score: 0.0
- License:
- Abstract: This study proposes a novel hybrid retrieval strategy for Retrieval-Augmented Generation (RAG) that integrates cosine similarity and cosine distance measures to improve retrieval performance, particularly for sparse data. The traditional cosine similarity measure is widely used to capture the similarity between vectors in high-dimensional spaces. However, it has been shown that this measure can yield arbitrary results in certain scenarios. To address this limitation, we incorporate cosine distance measures to provide a complementary perspective by quantifying the dissimilarity between vectors. Our approach is experimented on proprietary data, unlike recent publications that have used open-source datasets. The proposed method demonstrates enhanced retrieval performance and provides a more comprehensive understanding of the semantic relationships between documents or items. This hybrid strategy offers a promising solution for efficiently and accurately retrieving relevant information in knowledge-intensive applications, leveraging techniques such as BM25 (sparse) retrieval , vector (Dense) retrieval, and cosine distance based retrieval to facilitate efficient information retrieval.
Related papers
- VectorSearch: Enhancing Document Retrieval with Semantic Embeddings and
Optimized Search [1.0411820336052784]
We propose VectorSearch, which leverages advanced algorithms, embeddings, and indexing techniques for refined retrieval.
By utilizing innovative multi-vector search operations and encoding searches with advanced language models, our approach significantly improves retrieval accuracy.
Experiments on real-world datasets show that VectorSearch outperforms baseline metrics.
arXiv Detail & Related papers (2024-09-25T21:58:08Z) - TISIS : Trajectory Indexing for SImilarity Search [0.7373617024876725]
Social media platforms enable users to share diverse types of information, including geolocation data.
geolocation data can be leveraged to reconstruct the trajectory of a user's visited Points of Interest (POIs)
Key requirement is the ability to measure the similarity between such trajectories.
arXiv Detail & Related papers (2024-09-17T15:57:33Z) - Retrieval with Learned Similarities [2.729516456192901]
State-of-the-art retrieval algorithms have migrated to learned similarities.
We show that Mixture-of-Logits (MoL) can be realized empirically to achieve superior performance on diverse retrieval scenarios.
arXiv Detail & Related papers (2024-07-22T08:19:34Z) - SparseCL: Sparse Contrastive Learning for Contradiction Retrieval [87.02936971689817]
Contradiction retrieval refers to identifying and extracting documents that explicitly disagree with or refute the content of a query.
Existing methods such as similarity search and crossencoder models exhibit significant limitations.
We introduce SparseCL that leverages specially trained sentence embeddings designed to preserve subtle, contradictory nuances between sentences.
arXiv Detail & Related papers (2024-06-15T21:57:03Z) - Efficient Semantic Matching with Hypercolumn Correlation [58.92933923647451]
HCCNet is an efficient yet effective semantic matching method.
It exploits the full potential of multi-scale correlation maps.
It eschews the reliance on expensive match-wise relationship mining on the 4D correlation map.
arXiv Detail & Related papers (2023-11-07T20:40:07Z) - Relation-aware Ensemble Learning for Knowledge Graph Embedding [68.94900786314666]
We propose to learn an ensemble by leveraging existing methods in a relation-aware manner.
exploring these semantics using relation-aware ensemble leads to a much larger search space than general ensemble methods.
We propose a divide-search-combine algorithm RelEns-DSC that searches the relation-wise ensemble weights independently.
arXiv Detail & Related papers (2023-10-13T07:40:12Z) - Lexically-Accelerated Dense Retrieval [29.327878974130055]
'LADR' (Lexically-Accelerated Dense Retrieval) is a simple-yet-effective approach that improves the efficiency of existing dense retrieval models.
LADR consistently achieves both precision and recall that are on par with an exhaustive search on standard benchmarks.
arXiv Detail & Related papers (2023-07-31T15:44:26Z) - Itemset Utility Maximization with Correlation Measure [8.581840054840335]
High utility itemset mining (HUIM) is used to find out interesting but hidden information (e.g., profit and risk)
In this paper, we propose a novel algorithm called the Itemset Utility Maximization with Correlation Measure (CoIUM)
Two upper bounds and four pruning strategies are utilized to effectively prune the search space. And a concise array-based structure named utility-bin is used to calculate and store the adopted upper bounds in linear time and space.
arXiv Detail & Related papers (2022-08-26T10:06:24Z) - Recall@k Surrogate Loss with Large Batches and Similarity Mixup [62.67458021725227]
Direct optimization, by gradient descent, of an evaluation metric is not possible when it is non-differentiable.
In this work, a differentiable surrogate loss for the recall is proposed.
The proposed method achieves state-of-the-art results in several image retrieval benchmarks.
arXiv Detail & Related papers (2021-08-25T11:09:11Z) - PAIR: Leveraging Passage-Centric Similarity Relation for Improving Dense
Passage Retrieval [87.68667887072324]
We propose a novel approach that leverages query-centric and PAssage-centric sImilarity Relations (called PAIR) for dense passage retrieval.
To implement our approach, we make three major technical contributions by introducing formal formulations of the two kinds of similarity relations.
Our approach significantly outperforms previous state-of-the-art models on both MSMARCO and Natural Questions datasets.
arXiv Detail & Related papers (2021-08-13T02:07:43Z) - DecAug: Augmenting HOI Detection via Decomposition [54.65572599920679]
Current algorithms suffer from insufficient training samples and category imbalance within datasets.
We propose an efficient and effective data augmentation method called DecAug for HOI detection.
Experiments show that our method brings up to 3.3 mAP and 1.6 mAP improvements on V-COCO and HICODET dataset.
arXiv Detail & Related papers (2020-10-02T13:59:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.