Retrieval with Learned Similarities
- URL: http://arxiv.org/abs/2407.15462v3
- Date: Wed, 20 Nov 2024 18:30:19 GMT
- Title: Retrieval with Learned Similarities
- Authors: Bailu Ding, Jiaqi Zhai,
- Abstract summary: State-of-the-art retrieval algorithms have migrated to learned similarities.
We show that Mixture-of-Logits (MoL) can be realized empirically to achieve superior performance on diverse retrieval scenarios.
- Score: 2.729516456192901
- License:
- Abstract: Retrieval plays a fundamental role in recommendation systems, search, and natural language processing (NLP) by efficiently finding relevant items from a large corpus given a query. Dot products have been widely used as the similarity function in such tasks, enabled by Maximum Inner Product Search (MIPS) algorithms for efficient retrieval. However, state-of-the-art retrieval algorithms have migrated to learned similarities. These advanced approaches encompass multiple query embeddings, complex neural networks, direct item ID decoding via beam search, and hybrid solutions. Unfortunately, we lack efficient solutions for retrieval in these state-of-the-art setups. Our work addresses this gap by investigating efficient retrieval techniques with expressive learned similarity functions. We establish Mixture-of-Logits (MoL) as a universal approximator of similarity functions, demonstrate that MoL's expressiveness can be realized empirically to achieve superior performance on diverse retrieval scenarios, and propose techniques to retrieve the approximate top-k results using MoL with tight error bounds. Through extensive experimentation, we show that MoL, enhanced by our proposed mutual information-based load balancing loss, sets new state-of-the-art results across heterogeneous scenarios, including sequential retrieval models in recommendation systems and finetuning language models for question answering; and our approximate top-$k$ algorithms outperform baselines by up to 66x in latency while achieving >.99 recall rate compared to exact algorithms.
Related papers
- pEBR: A Probabilistic Approach to Embedding Based Retrieval [4.8338111302871525]
Embedding retrieval aims to learn a shared semantic representation space for both queries and items.
In current industrial practice, retrieval systems typically retrieve a fixed number of items for different queries.
arXiv Detail & Related papers (2024-10-25T07:14:12Z) - Efficient Inverted Indexes for Approximate Retrieval over Learned Sparse Representations [8.796275989527054]
We propose a novel organization of the inverted index that enables fast retrieval over learned sparse embeddings.
Our approach organizes inverted lists into geometrically-cohesive blocks, each equipped with a summary vector.
Our results indicate that Seismic is one to two orders of magnitude faster than state-of-the-art inverted index-based solutions.
arXiv Detail & Related papers (2024-04-29T15:49:27Z) - Multimodal Learned Sparse Retrieval with Probabilistic Expansion Control [66.78146440275093]
Learned retrieval (LSR) is a family of neural methods that encode queries and documents into sparse lexical vectors.
We explore the application of LSR to the multi-modal domain, with a focus on text-image retrieval.
Current approaches like LexLIP and STAIR require complex multi-step training on massive datasets.
Our proposed approach efficiently transforms dense vectors from a frozen dense model into sparse lexical vectors.
arXiv Detail & Related papers (2024-02-27T14:21:56Z) - Relation-aware Ensemble Learning for Knowledge Graph Embedding [68.94900786314666]
We propose to learn an ensemble by leveraging existing methods in a relation-aware manner.
exploring these semantics using relation-aware ensemble leads to a much larger search space than general ensemble methods.
We propose a divide-search-combine algorithm RelEns-DSC that searches the relation-wise ensemble weights independently.
arXiv Detail & Related papers (2023-10-13T07:40:12Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
Clustered multi-task compressive sensing is a hierarchical model that solves multiple compressive sensing tasks.
The existing inference algorithm for this model is computationally expensive and does not scale well in high dimensions.
We propose a new algorithm that substantially accelerates model inference by avoiding the need to explicitly compute these covariance matrices.
arXiv Detail & Related papers (2023-09-30T15:57:14Z) - Lexically-Accelerated Dense Retrieval [29.327878974130055]
'LADR' (Lexically-Accelerated Dense Retrieval) is a simple-yet-effective approach that improves the efficiency of existing dense retrieval models.
LADR consistently achieves both precision and recall that are on par with an exhaustive search on standard benchmarks.
arXiv Detail & Related papers (2023-07-31T15:44:26Z) - Provably Efficient Representation Learning with Tractable Planning in
Low-Rank POMDP [81.00800920928621]
We study representation learning in partially observable Markov Decision Processes (POMDPs)
We first present an algorithm for decodable POMDPs that combines maximum likelihood estimation (MLE) and optimism in the face of uncertainty (OFU)
We then show how to adapt this algorithm to also work in the broader class of $gamma$-observable POMDPs.
arXiv Detail & Related papers (2023-06-21T16:04:03Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Approximate Nearest Neighbor Search under Neural Similarity Metric for
Large-Scale Recommendation [20.42993976179691]
We propose a novel method to extend ANN search to arbitrary matching functions.
Our main idea is to perform a greedy walk with a matching function in a similarity graph constructed from all items.
The proposed method has been fully deployed in the Taobao display advertising platform and brings a considerable advertising revenue increase.
arXiv Detail & Related papers (2022-02-14T07:55:57Z) - Multidimensional Assignment Problem for multipartite entity resolution [69.48568967931608]
Multipartite entity resolution aims at integrating records from multiple datasets into one entity.
We apply two procedures, a Greedy algorithm and a large scale neighborhood search, to solve the assignment problem.
We find evidence that design-based multi-start can be more efficient as the size of databases grow large.
arXiv Detail & Related papers (2021-12-06T20:34:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.