Ultrasound Report Generation with Cross-Modality Feature Alignment via Unsupervised Guidance
- URL: http://arxiv.org/abs/2406.00644v1
- Date: Sun, 2 Jun 2024 07:16:58 GMT
- Title: Ultrasound Report Generation with Cross-Modality Feature Alignment via Unsupervised Guidance
- Authors: Jun Li, Tongkun Su, Baoliang Zhao, Faqin Lv, Qiong Wang, Nassir Navab, Ying Hu, Zhongliang Jiang,
- Abstract summary: We propose a novel framework for automatic ultrasound report generation, leveraging a combination of unsupervised and supervised learning methods.
Our framework incorporates unsupervised learning methods to extract potential knowledge from ultrasound text reports.
We design a global semantic comparison mechanism to enhance the performance of generating more comprehensive and accurate medical reports.
- Score: 37.37279393074854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic report generation has arisen as a significant research area in computer-aided diagnosis, aiming to alleviate the burden on clinicians by generating reports automatically based on medical images. In this work, we propose a novel framework for automatic ultrasound report generation, leveraging a combination of unsupervised and supervised learning methods to aid the report generation process. Our framework incorporates unsupervised learning methods to extract potential knowledge from ultrasound text reports, serving as the prior information to guide the model in aligning visual and textual features, thereby addressing the challenge of feature discrepancy. Additionally, we design a global semantic comparison mechanism to enhance the performance of generating more comprehensive and accurate medical reports. To enable the implementation of ultrasound report generation, we constructed three large-scale ultrasound image-text datasets from different organs for training and validation purposes. Extensive evaluations with other state-of-the-art approaches exhibit its superior performance across all three datasets. Code and dataset are valuable at this link.
Related papers
- 3D-CT-GPT: Generating 3D Radiology Reports through Integration of Large Vision-Language Models [51.855377054763345]
This paper introduces 3D-CT-GPT, a Visual Question Answering (VQA)-based medical visual language model for generating radiology reports from 3D CT scans.
Experiments on both public and private datasets demonstrate that 3D-CT-GPT significantly outperforms existing methods in terms of report accuracy and quality.
arXiv Detail & Related papers (2024-09-28T12:31:07Z) - HERGen: Elevating Radiology Report Generation with Longitudinal Data [18.370515015160912]
We propose a novel History Enhanced Radiology Report Generation (HERGen) framework to efficiently integrate longitudinal data across patient visits.
Our approach not only allows for comprehensive analysis of varied historical data but also improves the quality of generated reports through an auxiliary contrastive objective.
The extensive evaluations across three datasets demonstrate that our framework surpasses existing methods in generating accurate radiology reports and effectively predicting disease progression from medical images.
arXiv Detail & Related papers (2024-07-21T13:29:16Z) - Structural Entities Extraction and Patient Indications Incorporation for Chest X-ray Report Generation [10.46031380503486]
We introduce a novel method, textbfStructural textbfEntities extraction and patient indications textbfIncorporation (SEI) for chest X-ray report generation.
We employ a structural entities extraction (SEE) approach to eliminate presentation-style vocabulary in reports.
We propose a cross-modal fusion network to integrate information from X-ray images, similar historical cases, and patient-specific indications.
arXiv Detail & Related papers (2024-05-23T01:29:47Z) - Eye-gaze Guided Multi-modal Alignment for Medical Representation Learning [65.54680361074882]
Eye-gaze Guided Multi-modal Alignment (EGMA) framework harnesses eye-gaze data for better alignment of medical visual and textual features.
We conduct downstream tasks of image classification and image-text retrieval on four medical datasets.
arXiv Detail & Related papers (2024-03-19T03:59:14Z) - HistGen: Histopathology Report Generation via Local-Global Feature Encoding and Cross-modal Context Interaction [16.060286162384536]
HistGen is a learning-empowered framework for histopathology report generation.
It aims to boost report generation by aligning whole slide images (WSIs) and diagnostic reports from local and global granularity.
Experimental results on WSI report generation show the proposed model outperforms state-of-the-art (SOTA) models by a large margin.
arXiv Detail & Related papers (2024-03-08T15:51:43Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
We propose a knowledge graph with Dynamic structure and nodes to facilitate medical report generation with Contrastive Learning.
In detail, the fundamental structure of our graph is pre-constructed from general knowledge.
Each image feature is integrated with its very own updated graph before being fed into the decoder module for report generation.
arXiv Detail & Related papers (2023-03-18T03:53:43Z) - Factored Attention and Embedding for Unstructured-view Topic-related
Ultrasound Report Generation [70.7778938191405]
We propose a novel factored attention and embedding model (termed FAE-Gen) for the unstructured-view topic-related ultrasound report generation.
The proposed FAE-Gen mainly consists of two modules, i.e., view-guided factored attention and topic-oriented factored embedding, which capture the homogeneous and heterogeneous morphological characteristic across different views.
arXiv Detail & Related papers (2022-03-12T15:24:03Z) - Radiology Report Generation with a Learned Knowledge Base and
Multi-modal Alignment [27.111857943935725]
We present an automatic, multi-modal approach for report generation from chest x-ray.
Our approach features two distinct modules: (i) Learned knowledge base and (ii) Multi-modal alignment.
With the aid of both modules, our approach clearly outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-12-30T10:43:56Z) - A Multisite, Report-Based, Centralized Infrastructure for Feedback and
Monitoring of Radiology AI/ML Development and Clinical Deployment [0.0]
An interactive radiology reporting approach integrates image viewing, dictation, natural language processing (NLP) and creation of hyperlinks between image findings and the report.
These images and labels can be captured and centralized in a cloud-based system.
The method addresses proposed regulatory requirements for post-marketing surveillance and external data.
arXiv Detail & Related papers (2020-08-31T17:59:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.