論文の概要: AI-Face: A Million-Scale Demographically Annotated AI-Generated Face Dataset and Fairness Benchmark
- arxiv url: http://arxiv.org/abs/2406.00783v2
- Date: Tue, 4 Jun 2024 16:08:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 03:26:39.121807
- Title: AI-Face: A Million-Scale Demographically Annotated AI-Generated Face Dataset and Fairness Benchmark
- Title(参考訳): AI-Face:AI生成した顔データセットとフェアネスベンチマークを100万件のデモグラフィックで表現する
- Authors: Li Lin, Santosh, Xin Wang, Shu Hu,
- Abstract要約: AI-Faceデータセットは、人口統計学的にアノテートされた最初のAI生成顔画像データセットである。
このデータセットに基づいて、さまざまなAI顔検出装置を評価するために、最初の総合的公正度ベンチマークを行う。
- 参考スコア(独自算出の注目度): 12.368133562194267
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI-generated faces have enriched human life, such as entertainment, education, and art. However, they also pose misuse risks. Therefore, detecting AI-generated faces becomes crucial, yet current detectors show biased performance across different demographic groups. Mitigating biases can be done by designing algorithmic fairness methods, which usually require demographically annotated face datasets for model training. However, no existing dataset comprehensively encompasses both demographic attributes and diverse generative methods, which hinders the development of fair detectors for AI-generated faces. In this work, we introduce the AI-Face dataset, the first million-scale demographically annotated AI-generated face image dataset, including real faces, faces from deepfake videos, and faces generated by Generative Adversarial Networks and Diffusion Models. Based on this dataset, we conduct the first comprehensive fairness benchmark to assess various AI face detectors and provide valuable insights and findings to promote the future fair design of AI face detectors. Our AI-Face dataset and benchmark code are publicly available at https://github.com/Purdue-M2/AI-Face-FairnessBench.
- Abstract(参考訳): AIによって生成された顔は、娯楽、教育、芸術といった人間の生活を豊かにしている。
しかし、誤用リスクも生じている。
したがって、AIによって生成された顔を検出することが重要になるが、現在の検出器は異なる人口集団間でバイアスのある性能を示す。
バイアスの緩和はアルゴリズムフェアネスの手法を設計することで行うことができる。
しかし、人口統計特性と多様な生成方法の両方を包括的に包括的に含む既存のデータセットは、AI生成顔のための公正な検出器の開発を妨げるものではない。
本研究では,AI-Faceデータセットを紹介する。このデータセットは,実顔,ディープフェイクビデオからの顔,ジェネレーティブ・ディフュージョン・モデルによって生成された顔を含む,人口統計学的にアノテートされた最初のAI生成顔画像データセットである。
このデータセットに基づいて、さまざまなAI顔検出器を評価するための初の総合的公正度ベンチマークを実施し、AI顔検出器の将来的公正設計を促進するための貴重な洞察と発見を提供する。
AI-Faceデータセットとベンチマークコードはhttps://github.com/Purdue-M2/AI-Face-FairnessBench.comで公開されています。
関連論文リスト
- Self-Supervised Learning for Detecting AI-Generated Faces as Anomalies [58.11545090128854]
本稿では、写真顔画像から純粋にカメラ固有の特徴と顔特有の特徴の自己教師付き学習を活用することで、AI生成顔の異常検出手法について述べる。
提案手法の成功は,特徴抽出器を訓練して4つの通常交換可能な画像ファイルフォーマット(EXIF)をランク付けし,人工的に操作された顔画像の分類を行うプリテキストタスクを設計することにある。
論文 参考訳(メタデータ) (2025-01-04T06:23:24Z) - Fairer Analysis and Demographically Balanced Face Generation for Fairer Face Verification [69.04239222633795]
顔認識と検証は、深層表現の導入によって性能が向上した2つのコンピュータビジョンタスクである。
現実のトレーニングデータセットにおける顔データの繊細な性質とバイアスによる倫理的、法的、技術的な課題は、彼らの開発を妨げる。
公平性を向上する新しい制御された生成パイプラインを導入する。
論文 参考訳(メタデータ) (2024-12-04T14:30:19Z) - DiffusionFace: Towards a Comprehensive Dataset for Diffusion-Based Face Forgery Analysis [71.40724659748787]
DiffusionFaceは、最初の拡散ベースのフェイスフォージェリーデータセットである。
非条件およびテキストガイドの顔画像生成、Img2Img、Inpaint、Diffusionベースの顔交換アルゴリズムなど、さまざまなフォージェリーカテゴリをカバーする。
重要なメタデータと、評価のための実世界のインターネットソースの偽顔画像データセットを提供する。
論文 参考訳(メタデータ) (2024-03-27T11:32:44Z) - GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning [50.7702397913573]
フォトリアリスティック・ジェネレータの急速な進歩は、真の画像と操作された画像の相違がますます不明瞭になっている臨界点に達している。
公開されている顔の偽造データセットはいくつかあるが、偽造顔は主にGANベースの合成技術を用いて生成される。
我々は,大規模で多様できめ細かな高忠実度データセットであるGenFaceを提案し,ディープフェイク検出の進展を促進する。
論文 参考訳(メタデータ) (2024-02-03T03:13:50Z) - Generalized Face Liveness Detection via De-fake Face Generator [52.23271636362843]
以前の顔アンチスプーフィング(FAS)手法は、目に見えない領域に一般化するという課題に直面している。
本稿では,大規模に付加的な現実面を効果的に活用できるAnomalous cue Guided FAS (AG-FAS)法を提案する。
提案手法は,未知のシナリオと未知のプレゼンテーションアタックを用いたクロスドメイン評価において,最先端の結果を実現する。
論文 参考訳(メタデータ) (2024-01-17T06:59:32Z) - Finding AI-Generated Faces in the Wild [9.390562437823078]
私たちは、AIが生成した顔と実際の顔を区別する、より狭いタスクに重点を置いています。
これは、不正なオンラインアカウントを偽のユーザープロフィール写真で扱う場合に特に当てはまる。
顔のみに焦点を合わせることで、よりレジリエントで汎用的なアーティファクトを検出することができることを示す。
論文 参考訳(メタデータ) (2023-11-14T22:46:01Z) - My Face My Choice: Privacy Enhancing Deepfakes for Social Media
Anonymization [4.725675279167593]
仮説的ソーシャルネットワークに3つの顔アクセスモデルを導入し、ユーザーが承認した写真にのみ現れる能力を持つ。
我々のアプローチは、現在のタグ付けシステムを廃止し、未承認の顔を定量的に異なるディープフェイクに置き換える。
その結果,7つのSOTA顔認識器を動作させることで,平均精度を61%削減できることがわかった。
論文 参考訳(メタデータ) (2022-11-02T17:58:20Z) - Rethinking Bias Mitigation: Fairer Architectures Make for Fairer Face
Recognition [107.58227666024791]
顔認識システムは、法執行を含む安全クリティカルなアプリケーションに広くデプロイされている。
彼らは、性別や人種など、様々な社会的デデノグラフィー次元に偏見を示す。
バイアス軽減に関するこれまでの研究は、主にトレーニングデータの事前処理に重点を置いていた。
論文 参考訳(メタデータ) (2022-10-18T15:46:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。