論文の概要: Evidence of Learned Look-Ahead in a Chess-Playing Neural Network
- arxiv url: http://arxiv.org/abs/2406.00877v1
- Date: Sun, 2 Jun 2024 21:57:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 02:56:53.382858
- Title: Evidence of Learned Look-Ahead in a Chess-Playing Neural Network
- Title(参考訳): Chess-Playing Neural NetworkにおけるLeared Look-Aheadのエビデンス
- Authors: Erik Jenner, Shreyas Kapur, Vasil Georgiev, Cameron Allen, Scott Emmons, Stuart Russell,
- Abstract要約: 我々はChess Leela Zeroの政策ネットワークにおいて、学習したルックアヘッドの証拠を示す。
我々は、Leelaが将来の最適動作を内部的に表現し、これらの表現が、特定のボード状態における最終的な出力に不可欠であることを見出した。
これらの発見は、ニューラルネットワークにおける学習されたルックアヘッドの存在証明であり、その能力をよりよく理解するための一歩かもしれない。
- 参考スコア(独自算出の注目度): 11.746104876318606
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Do neural networks learn to implement algorithms such as look-ahead or search "in the wild"? Or do they rely purely on collections of simple heuristics? We present evidence of learned look-ahead in the policy network of Leela Chess Zero, the currently strongest neural chess engine. We find that Leela internally represents future optimal moves and that these representations are crucial for its final output in certain board states. Concretely, we exploit the fact that Leela is a transformer that treats every chessboard square like a token in language models, and give three lines of evidence (1) activations on certain squares of future moves are unusually important causally; (2) we find attention heads that move important information "forward and backward in time," e.g., from squares of future moves to squares of earlier ones; and (3) we train a simple probe that can predict the optimal move 2 turns ahead with 92% accuracy (in board states where Leela finds a single best line). These findings are an existence proof of learned look-ahead in neural networks and might be a step towards a better understanding of their capabilities.
- Abstract(参考訳): ニューラルネットワークは、ルックアヘッドや検索のようなアルゴリズムの実装を学ぶか?
それとも、単純なヒューリスティックのコレクションに純粋に依存しているのだろうか?
現在最強のニューラルチェスエンジンであるLeela Chess Zeroのポリシーネットワークにおいて、学習されたルックアヘッドの証拠を示す。
我々は、Leelaが将来の最適動作を内部的に表現し、これらの表現が、特定のボード状態における最終的な出力に不可欠であることを見出した。
具体的には、Leelaが言語モデルにおけるトークンとしてすべてのチェスボードの正方形を扱い、(1) 将来の動きの特定の正方形上でのアクティベーションが異常に重要な因果関係にあること、(2) 将来の四角形から過去の四角形へ重要な情報を移動させる注意ヘッドが見つかったこと、(3) 最適な動きを予測できる簡単なプローブを訓練し、92%の精度で進ませる(Leelaが1つの最良の行を見つけるボード状態)。
これらの発見は、ニューラルネットワークにおける学習されたルックアヘッドの存在証明であり、その能力をよりよく理解するための一歩かもしれない。
関連論文リスト
- Predicting User Perception of Move Brilliance in Chess [3.434553688053531]
チェスの動きを華々しく分類する最初のシステムを示す。
精度は79%(ベースレート50%)、PPVは83%、NPVは75%である。
より弱いエンジンが低品質とみなすと、この動きは輝かしく、すべて等しいと予測される傾向が示される。
論文 参考訳(メタデータ) (2024-06-14T17:46:26Z) - Amortized Planning with Large-Scale Transformers: A Case Study on Chess [11.227110138932442]
本稿では,AIにおける画期的な計画問題であるチェスを用いて,計画課題の性能評価を行う。
ChessBenchは、Stockfishが提供する法的行動と価値アノテーション(1500億ポイント)を備えた1000万のチェスゲームの大規模なベンチマークである。
極めて優れた近似を教師付き学習により大規模変圧器に蒸留することは可能であるが, 完全蒸留は依然として到達範囲を超えている。
論文 参考訳(メタデータ) (2024-02-07T00:36:24Z) - Learning to Play Chess from Textbooks (LEAP): a Corpus for Evaluating
Chess Moves based on Sentiment Analysis [4.314956204483074]
本稿では,チェスの遊び方を学ぶための新しい知識源として,チェスの教科書について検討する。
我々はLEAPコーパスを開発した。LEAPコーパスは、構造化された(記法やボード状態を動かす)構造付きおよび非構造化データを備えた、最初の、そして新しい異種データセットである。
感情分析のための各種変圧器ベースラインモデルの性能評価実験を行った。
論文 参考訳(メタデータ) (2023-10-31T08:26:02Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - IF2Net: Innately Forgetting-Free Networks for Continual Learning [49.57495829364827]
継続的な学習は、以前に学んだ知識に干渉することなく、新しい概念を漸進的に吸収することができる。
ニューラルネットワークの特性に触発され,本研究は,IF2Net(Innately Forgetting-free Network)の設計方法について検討した。
IF2Netは、1つのネットワークがテスト時にタスクのIDを告げることなく、本質的に無制限のマッピングルールを学習することを可能にする。
論文 参考訳(メタデータ) (2023-06-18T05:26:49Z) - Emergent World Representations: Exploring a Sequence Model Trained on a Synthetic Task [75.35278593566068]
言語モデルは驚くべき範囲の能力を示しているが、その明らかな能力の源泉は不明である。
これらのネットワークは単に表面統計の集合を記憶しているだけなのか、あるいは、彼らが見るシーケンスを生成するプロセスの内部表現に依存しているのだろうか?
簡単なボードゲームOthelloにおける法的な動きを予測するタスクに,GPTモデルの変種を適用して検討する。
論文 参考訳(メタデータ) (2022-10-24T16:29:55Z) - Acquisition of Chess Knowledge in AlphaZero [14.41428465712717]
人間の知識がAlphaZeroニューラルネットワークによって獲得され、チェスのゲームでトレーニングされることを示す。
これらの概念がAlphaZeroネットワークでいつ、どこで表現されているかを示す。
チェスのグランドマスターであるウラジーミル・クラムニクの質的分析を含む、オープニングプレイに焦点を当てた行動分析も提供する。
論文 参考訳(メタデータ) (2021-11-17T17:46:19Z) - Reasoning-Modulated Representations [85.08205744191078]
タスクが純粋に不透明でないような共通的な環境について研究する。
我々のアプローチは、新しいデータ効率表現学習の道を開く。
論文 参考訳(メタデータ) (2021-07-19T13:57:13Z) - Determining Chess Game State From an Image [19.06796946564999]
本稿では,既存のモデルよりも桁違いに大きい3次元モデルから合成した新しいデータセットについて述べる。
従来のコンピュータビジョン技術とディープラーニングを組み合わせた新しいエンドツーエンドチェス認識システムを紹介します。
記述されたシステムでは,テストセット上での誤差率は0.23%であり,現状の28倍である。
論文 参考訳(メタデータ) (2021-04-30T13:02:13Z) - Learning Chess Blindfolded: Evaluating Language Models on State Tracking [69.3794549747725]
私たちはチェスのゲームのための言語モデリングのタスクを検討します。
自然言語とは異なり、チェス表記法は単純で制約のある決定論的領域を記述する。
トランスフォーマー言語モデルでは,移動シーケンスのみを訓練することで,ピースの追跡や法的動作の予測を高精度に行うことができる。
論文 参考訳(メタデータ) (2021-02-26T01:16:23Z) - Learning to Play Sequential Games versus Unknown Opponents [93.8672371143881]
学習者が最初にプレーするゲームと、選択した行動に反応する相手との連続的なゲームについて考察する。
対戦相手の対戦相手列と対戦する際,学習者に対して新しいアルゴリズムを提案する。
我々の結果には、相手の反応の正則性に依存するアルゴリズムの後悔の保証が含まれている。
論文 参考訳(メタデータ) (2020-07-10T09:33:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。