Unveil the Duality of Retrieval-Augmented Generation: Theoretical Analysis and Practical Solution
- URL: http://arxiv.org/abs/2406.00944v1
- Date: Mon, 3 Jun 2024 02:56:14 GMT
- Title: Unveil the Duality of Retrieval-Augmented Generation: Theoretical Analysis and Practical Solution
- Authors: Shicheng Xu, Liang Pang, Huawei Shen, Xueqi Cheng,
- Abstract summary: Retrieval-augmented generation (RAG) utilizes retrieved texts to enhance large language models (LLMs)
This paper takes the first step in theoretically giving the essential explanation of benefit and detriment in RAG.
Based on our theory, we propose a practical novel method, X-RAG, which achieves collaborative generation between pure LLM and RAG at token level.
- Score: 76.75124161306795
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-augmented generation (RAG) utilizes retrieved texts to enhance large language models (LLMs). However, studies show that RAG is not consistently effective and can even mislead LLMs due to noisy or incorrect retrieved texts. This suggests that RAG possesses a duality including both benefit and detriment. Although many existing methods attempt to address this issue, they lack a theoretical explanation for the duality in RAG. The benefit and detriment within this duality remain a black box that cannot be quantified or compared in an explainable manner. This paper takes the first step in theoretically giving the essential explanation of benefit and detriment in RAG by: (1) decoupling and formalizing them from RAG prediction, (2) approximating the gap between their values by representation similarity and (3) establishing the trade-off mechanism between them, to make them explainable, quantifiable, and comparable. We demonstrate that the distribution difference between retrieved texts and LLMs' knowledge acts as double-edged sword, bringing both benefit and detriment. We also prove that the actual effect of RAG can be predicted at token level. Based on our theory, we propose a practical novel method, X-RAG, which achieves collaborative generation between pure LLM and RAG at token level to preserve benefit and avoid detriment. Experiments in real-world tasks based on LLMs including OPT, LLaMA-2, and Mistral show the effectiveness of our method and support our theoretical results.
Related papers
- Source Attribution in Retrieval-Augmented Generation [3.579940498399598]
This paper investigates the feasibility and effectiveness of adapting Shapley-based attribution to identify influential retrieved documents in RAG.<n>Our work aims to: (1) systematically apply established attribution principles to the RAG document-level setting; (2) quantify how well SHAP approximations can mirror exact attributions; and (3) evaluate their practical explainability in identifying critical documents.
arXiv Detail & Related papers (2025-07-06T17:36:45Z) - Verifying the Verifiers: Unveiling Pitfalls and Potentials in Fact Verifiers [59.168391398830515]
We evaluate 12 pre-trained LLMs and one specialized fact-verifier, using a collection of examples from 14 fact-checking benchmarks.<n>We highlight the importance of addressing annotation errors and ambiguity in datasets.<n> frontier LLMs with few-shot in-context examples, often overlooked in previous works, achieve top-tier performance.
arXiv Detail & Related papers (2025-06-16T10:32:10Z) - DRAG: Distilling RAG for SLMs from LLMs to Transfer Knowledge and Mitigate Hallucination via Evidence and Graph-based Distillation [18.864913008085377]
We introduce $texttDRAG$, a novel framework for distilling RAG knowledge from large-scale Language Models into small LMs.<n>Our approach leverages evidence- and knowledge graph-based distillation, ensuring that the distilled model retains critical factual knowledge while significantly reducing model size and computational cost.
arXiv Detail & Related papers (2025-06-02T17:59:51Z) - GainRAG: Preference Alignment in Retrieval-Augmented Generation through Gain Signal Synthesis [30.185213495829164]
The Retrieval-Augmented Generation (RAG) framework introduces a retrieval module to dynamically inject retrieved information into the input context of large language models (LLMs)<n>We propose GainRAG, a novel approach that aligns the retriever's and LLM's preferences by defining a new metric, "gain", which measure how well an input passage contributes to correct outputs.<n>The experimental results on 6 datasets verify the effectiveness of GainRAG.
arXiv Detail & Related papers (2025-05-24T14:14:57Z) - The Other Side of the Coin: Exploring Fairness in Retrieval-Augmented Generation [73.16564415490113]
Retrieval-Augmented Generation (RAG) enhances Large Language Models (LLMs) by retrieving relevant document from external knowledge sources.
We propose two approaches, FairFT and FairFilter, to mitigate the fairness issues introduced by RAG for small-scale LLMs.
arXiv Detail & Related papers (2025-04-11T10:17:10Z) - U-NIAH: Unified RAG and LLM Evaluation for Long Context Needle-In-A-Haystack [9.760456105567078]
This paper introduces U-NIAH, a unified framework that systematically compares Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG)
Our framework incorporates multi-needle, long-needle, and needle-in-needle configurations, along with different retrieval settings.
Our findings show that RAG significantly enhances smaller LLMs by mitigating the "lost-in-the-middle" effect and improving robustness.
arXiv Detail & Related papers (2025-03-01T05:05:24Z) - Provenance: A Light-weight Fact-checker for Retrieval Augmented LLM Generation Output [49.893971654861424]
We present a light-weight approach for detecting nonfactual outputs from retrieval-augmented generation (RAG)
We compute a factuality score that can be thresholded to yield a binary decision.
Our experiments show high area under the ROC curve (AUC) across a wide range of relevant open source datasets.
arXiv Detail & Related papers (2024-11-01T20:44:59Z) - OCEAN: Offline Chain-of-thought Evaluation and Alignment in Large Language Models [68.17018458283651]
This work focuses on the offline evaluation of the chain-of-thought capabilities of LLMs.
We use knowledge graphs (e.g., Wikidata5m) to provide feedback on the generated chain of thoughts.
We show how to optimize LLMs based on the proposed evaluation method.
arXiv Detail & Related papers (2024-10-31T07:48:44Z) - No Free Lunch: Retrieval-Augmented Generation Undermines Fairness in LLMs, Even for Vigilant Users [21.25007065608671]
Retrieval-Augmented Generation (RAG) is widely adopted for its effectiveness and cost-efficiency.
This study proposes a practical three-level threat model from the perspective of user awareness of fairness.
We examine the fairness implications of RAG using uncensored, partially censored, and fully censored datasets.
arXiv Detail & Related papers (2024-10-10T03:51:58Z) - Astute RAG: Overcoming Imperfect Retrieval Augmentation and Knowledge Conflicts for Large Language Models [20.605487145370752]
We find that imperfect retrieval augmentation might be inevitable and quite harmful, through controlled analysis under realistic conditions.
We propose Astute RAG, a novel RAG approach that adaptively elicits essential information from LLMs' internal knowledge.
Further analysis reveals that Astute RAG effectively resolves knowledge conflicts, improving the reliability and trustworthiness of RAG systems.
arXiv Detail & Related papers (2024-10-09T17:59:58Z) - LLMEmb: Large Language Model Can Be a Good Embedding Generator for Sequential Recommendation [57.49045064294086]
Large Language Model (LLM) has the ability to capture semantic relationships between items, independent of their popularity.
We introduce LLMEmb, a novel method leveraging LLM to generate item embeddings that enhance Sequential Recommender Systems (SRS) performance.
arXiv Detail & Related papers (2024-09-30T03:59:06Z) - LMGT: Optimizing Exploration-Exploitation Balance in Reinforcement Learning through Language Model Guided Trade-offs [27.014415210732103]
We introduce textbfLanguage textbfModel textbfGuided textbfTrade-offs (i.e., textbfLMGT), a novel, sample-efficient framework for Reinforcement Learning.
arXiv Detail & Related papers (2024-09-07T07:40:43Z) - Speculative RAG: Enhancing Retrieval Augmented Generation through Drafting [68.90949377014742]
Speculative RAG is a framework that leverages a larger generalist LM to efficiently verify multiple RAG drafts produced in parallel by a smaller, distilled specialist LM.
Our method accelerates RAG by delegating drafting to the smaller specialist LM, with the larger generalist LM performing a single verification pass over the drafts.
It notably enhances accuracy by up to 12.97% while reducing latency by 51% compared to conventional RAG systems on PubHealth.
arXiv Detail & Related papers (2024-07-11T06:50:19Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - ARAGOG: Advanced RAG Output Grading [44.99833362998488]
Retrieval-Augmented Generation (RAG) is essential for integrating external knowledge into Large Language Model (LLM) outputs.
This study assesses various RAG methods' impacts on retrieval precision and answer similarity.
arXiv Detail & Related papers (2024-04-01T10:43:52Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
We propose an information refinement training method named InFO-RAG.
InFO-RAG is low-cost and general across various tasks.
It improves the performance of LLaMA2 by an average of 9.39% relative points.
arXiv Detail & Related papers (2024-02-28T08:24:38Z) - Prompt Perturbation in Retrieval-Augmented Generation based Large Language Models [9.688626139309013]
Retrieval-Augmented Generation is considered as a means to improve the trustworthiness of text generation from large language models.
In this work, we find that the insertion of even a short prefix to the prompt leads to the generation of outputs far away from factually correct answers.
We introduce a novel optimization technique called Gradient Guided Prompt Perturbation.
arXiv Detail & Related papers (2024-02-11T12:25:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.