論文の概要: Enhancing Fairness in Unsupervised Graph Anomaly Detection through Disentanglement
- arxiv url: http://arxiv.org/abs/2406.00987v1
- Date: Mon, 3 Jun 2024 04:48:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 02:27:34.800853
- Title: Enhancing Fairness in Unsupervised Graph Anomaly Detection through Disentanglement
- Title(参考訳): 乱れによる教師なしグラフ異常検出における公平性向上
- Authors: Wenjing Chang, Kay Liu, Philip S. Yu, Jianjun Yu,
- Abstract要約: グラフ異常検出(GAD)は、金融詐欺検出から偽ニュース検出まで、さまざまなアプリケーションにおいてますます重要になっている。
現在のGAD法は主に公平性の問題を見落としており、特定の人口集団に対して差別的な決定が下される可能性がある。
DeFENDという属性グラフ上に,DisEntangle-based FairnEss-aware aNomaly Detectionフレームワークを考案した。
実世界のデータセットに対する実証的な評価から、DEFENDはGADにおいて効果的に機能し、最先端のベースラインと比較して公正性を著しく向上することが明らかとなった。
- 参考スコア(独自算出の注目度): 33.565252991113766
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph anomaly detection (GAD) is increasingly crucial in various applications, ranging from financial fraud detection to fake news detection. However, current GAD methods largely overlook the fairness problem, which might result in discriminatory decisions skewed toward certain demographic groups defined on sensitive attributes (e.g., gender, religion, ethnicity, etc.). This greatly limits the applicability of these methods in real-world scenarios in light of societal and ethical restrictions. To address this critical gap, we make the first attempt to integrate fairness with utility in GAD decision-making. Specifically, we devise a novel DisEntangle-based FairnEss-aware aNomaly Detection framework on the attributed graph, named DEFEND. DEFEND first introduces disentanglement in GNNs to capture informative yet sensitive-irrelevant node representations, effectively reducing societal bias inherent in graph representation learning. Besides, to alleviate discriminatory bias in evaluating anomalous nodes, DEFEND adopts a reconstruction-based anomaly detection, which concentrates solely on node attributes without incorporating any graph structure. Additionally, given the inherent association between input and sensitive attributes, DEFEND constrains the correlation between the reconstruction error and the predicted sensitive attributes. Our empirical evaluations on real-world datasets reveal that DEFEND performs effectively in GAD and significantly enhances fairness compared to state-of-the-art baselines. To foster reproducibility, our code is available at https://github.com/AhaChang/DEFEND.
- Abstract(参考訳): グラフ異常検出(GAD)は、金融詐欺検出から偽ニュース検出まで、さまざまなアプリケーションにおいてますます重要になっている。
しかし、現在のGAD法は主に公平性の問題を見落としており、差別的判断は、センシティブな属性(例えば、性別、宗教、民族など)で定義された特定の人口集団に偏っている可能性がある。
これは、社会的および倫理的制約を考慮して、現実世界のシナリオにおけるこれらの手法の適用性を大幅に制限する。
この重要なギャップに対処するため、我々はGAD意思決定における実用性と公正性を統合するための最初の試みを行う。
具体的には,DefEND と呼ばれる属性グラフ上に,新しい DisEntangle ベースの FairnEss 対応 aNomaly 検出フレームワークを考案する。
DEFEND はまず GNN のアンタングル化を導入し、情報的かつ機密性の高いノード表現をキャプチャし、グラフ表現学習に固有の社会的バイアスを効果的に低減する。
さらに、異常ノードの評価における識別バイアスを軽減するために、DEFENDは、グラフ構造を組み込まずにノード属性のみに集中する再構成ベースの異常検出を採用する。
さらに、入力属性と感度属性の固有の関連性を考えると、DEFENDは再構成エラーと予測された感度属性との相関を制約する。
実世界のデータセットに対する実証的な評価から、DEFENDはGADにおいて効果的に機能し、最先端のベースラインと比較して公正性を著しく向上することが明らかとなった。
再現性を高めるため、私たちのコードはhttps://github.com/AhaChang/DEFEND.comで利用可能です。
関連論文リスト
- Thinking Racial Bias in Fair Forgery Detection: Models, Datasets and Evaluations [63.52709761339949]
最初に、Fair Forgery Detection(FairFD)データセットと呼ばれる専用のデータセットをコントリビュートし、SOTA(Public State-of-the-art)メソッドの人種的偏見を証明する。
既存の偽造検出データセットとは異なり、自己構築のFairFDデータセットは、バランスの取れた人種比と、最も大規模な被験者との多様な偽造生成画像を含んでいる。
我々は、偽りの結果を避けることができる平均的メトリクスと実用正規化メトリクスを含む新しいメトリクスを設計する。
論文 参考訳(メタデータ) (2024-07-19T14:53:18Z) - Graph Out-of-Distribution Generalization via Causal Intervention [74.77883794668324]
本稿では,ノードレベルの分散シフトの下で頑健なグラフニューラルネットワーク(GNN)をトレーニングするための,概念的に単純だが原則化されたアプローチを提案する。
本手法は,環境推定器と熟練GNN予測器を協調する因果推論に基づく新たな学習目標を提案する。
本モデルでは,様々な分散シフトによる一般化を効果的に向上し,グラフOOD一般化ベンチマーク上での最先端の精度を最大27.4%向上させることができる。
論文 参考訳(メタデータ) (2024-02-18T07:49:22Z) - MAPPING: Debiasing Graph Neural Networks for Fair Node Classification
with Limited Sensitive Information Leakage [1.8238848494579714]
公正ノード分類のためのモデルに依存しない新しい脱バイアスフレームワーク MAPPing を提案する。
以上の結果から,MAPPingは実用性と公正性,および機密情報漏洩のプライバシーリスクとのトレードオフを良好に達成できることが示された。
論文 参考訳(メタデータ) (2024-01-23T14:59:46Z) - Few-shot Message-Enhanced Contrastive Learning for Graph Anomaly
Detection [15.757864894708364]
グラフ異常検出は、多数派から大きく逸脱するグラフデータの例外的なインスタンスを特定する上で重要な役割を果たす。
我々はFMGADと呼ばれる新しい数ショットグラフ異常検出モデルを提案する。
FMGADは, 人工的に注入された異常やドメイン・有機異常によらず, 他の最先端手法よりも優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2023-11-17T07:49:20Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
自己指導型自己学習(BOURNE)に基づく新しい統合グラフ異常検出フレームワークを提案する。
ノードとエッジ間のコンテキスト埋め込みを交換することで、ノードとエッジの異常を相互に検出できる。
BOURNEは、負のサンプリングを必要としないため、大きなグラフを扱う際の効率を高めることができる。
論文 参考訳(メタデータ) (2023-07-28T00:44:57Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - The Devil is in the Conflict: Disentangled Information Graph Neural
Networks for Fraud Detection [17.254383007779616]
性能劣化は主にトポロジと属性の矛盾に起因すると我々は主張する。
注意機構を用いて2つの視点を適応的に融合する簡易かつ効果的な手法を提案する。
我々のモデルは、実世界の不正検出データセットで最先端のベースラインを大幅に上回ることができる。
論文 参考訳(メタデータ) (2022-10-22T08:21:49Z) - Mitigating Algorithmic Bias with Limited Annotations [65.060639928772]
機密属性が公開されていない場合、バイアスを軽減するために、トレーニングデータの小さな部分を手動でアノテートする必要がある。
本稿では,アルゴリズムバイアスの影響を最大限に排除するために,限定アノテーションを誘導する対話型フレームワークであるアクティブペナライゼーション・オブ・差別(APOD)を提案する。
APODは完全なアノテートバイアス緩和と同等のパフォーマンスを示しており、機密情報が制限された場合、APODが現実世界のアプリケーションに利益をもたらすことを実証している。
論文 参考訳(メタデータ) (2022-07-20T16:31:19Z) - Improving Fairness in Graph Neural Networks via Mitigating Sensitive
Attribute Leakage [35.810534649478576]
グラフニューラルネットワーク(GNN)は、グラフ上のノード表現を学習する際の大きな力を示している。
GNNは、トレーニングデータから歴史的偏見を継承し、予測における差別的偏見をもたらす可能性がある。
本研究ではFairVGNN(Fair View Graph Neural Network)を提案する。
論文 参考訳(メタデータ) (2022-06-07T16:25:20Z) - From Unsupervised to Few-shot Graph Anomaly Detection: A Multi-scale
Contrastive Learning Approach [49.439021563395976]
グラフデータからの異常検出は、ソーシャルネットワーク、金融、eコマースなど、多くのアプリケーションにおいて重要なデータマイニングタスクである。
マルチスケールcONtrastive lEarning(略してANEMONE)を用いた新しいフレームワーク, graph Anomaly dEtection フレームワークを提案する。
グラフニューラルネットワークをバックボーンとして、複数のグラフスケール(ビュー)から情報をエンコードすることで、グラフ内のノードのより良い表現を学習する。
論文 参考訳(メタデータ) (2022-02-11T09:45:11Z) - Fairness without the sensitive attribute via Causal Variational
Autoencoder [17.675997789073907]
EUにおけるプライバシーの目的とRGPDのような多彩な規制のため、多くの個人機密属性は収集されないことが多い。
近年の開発成果を近似推論に活用することにより,このギャップを埋めるためのアプローチを提案する。
因果グラフに基づいて、機密情報プロキシを推論するために、SRCVAEと呼ばれる新しい変分自動符号化ベースのフレームワークを利用する。
論文 参考訳(メタデータ) (2021-09-10T17:12:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。