論文の概要: WinSyn: A High Resolution Testbed for Synthetic Data
- arxiv url: http://arxiv.org/abs/2310.08471v2
- Date: Thu, 28 Mar 2024 13:47:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 21:43:17.452930
- Title: WinSyn: A High Resolution Testbed for Synthetic Data
- Title(参考訳): WinSyn: 合成データのための高解像度テストベッド
- Authors: Tom Kelly, John Femiani, Peter Wonka,
- Abstract要約: 我々は、手続き的モデリング技術を用いて高品質な合成データを作成するためのユニークなデータセットとテストベッドであるWinSynを紹介する。
このデータセットには、世界中の場所から選抜された高解像度の窓の写真が含まれており、89,318の個々の窓作物は、多様な幾何学的特徴と材料的特性を示している。
合成画像と実画像の両方で意味的セグメンテーションネットワークを訓練し、実画像の共有テストセットでそれらの性能を比較することによって、手続きモデルを評価する。
- 参考スコア(独自算出の注目度): 41.11481327112564
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present WinSyn, a unique dataset and testbed for creating high-quality synthetic data with procedural modeling techniques. The dataset contains high-resolution photographs of windows, selected from locations around the world, with 89,318 individual window crops showcasing diverse geometric and material characteristics. We evaluate a procedural model by training semantic segmentation networks on both synthetic and real images and then comparing their performances on a shared test set of real images. Specifically, we measure the difference in mean Intersection over Union (mIoU) and determine the effective number of real images to match synthetic data's training performance. We design a baseline procedural model as a benchmark and provide 21,290 synthetically generated images. By tuning the procedural model, key factors are identified which significantly influence the model's fidelity in replicating real-world scenarios. Importantly, we highlight the challenge of procedural modeling using current techniques, especially in their ability to replicate the spatial semantics of real-world scenarios. This insight is critical because of the potential of procedural models to bridge to hidden scene aspects such as depth, reflectivity, material properties, and lighting conditions.
- Abstract(参考訳): 我々は、手続き的モデリング技術を用いて高品質な合成データを作成するためのユニークなデータセットとテストベッドであるWinSynを紹介する。
このデータセットには、世界中の場所から選抜された高解像度の窓の写真が含まれており、89,318の個々の窓作物は、多様な幾何学的特徴と材料的特性を示している。
合成画像と実画像の両方で意味的セグメンテーションネットワークを訓練し、実画像の共有テストセットでそれらの性能を比較することによって、手続きモデルを評価する。
具体的には、平均対合(mIoU)の差を測定し、合成データのトレーニング性能に適合する実画像の有効数を決定する。
ベースラインプロシージャモデルをベンチマークとして設計し,21,290個の合成画像を提供する。
手続きモデルを調整することで、実世界のシナリオを再現する際のモデルの忠実性に大きな影響を及ぼす重要な要素が特定される。
重要なことは、特に実世界のシナリオの空間的意味論を再現する能力において、現状の技術を用いた手続き的モデリングの課題を強調している。
この洞察は、奥行き、反射率、材料特性、照明条件といった隠れた風景面にブリッジする手続きモデルの可能性から重要である。
関連論文リスト
- Visual Car Brand Classification by Implementing a Synthetic Image Dataset Creation Pipeline [3.524869467682149]
安定拡散を用いた合成画像データセットの自動生成パイプラインを提案する。
YOLOv8を用いて自動境界ボックス検出と合成画像の品質評価を行う。
論文 参考訳(メタデータ) (2024-06-03T07:44:08Z) - Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization [62.157627519792946]
ブリッジドトランスファー(ブリッジドトランスファー)と呼ばれる新しいフレームワークを導入する。このフレームワークは、当初、トレーニング済みモデルの微調整に合成画像を使用し、転送性を向上させる。
合成画像と実画像のスタイルアライメントを改善するために,データセットスタイルの逆変換方式を提案する。
提案手法は10の異なるデータセットと5つの異なるモデルで評価され、一貫した改善が示されている。
論文 参考訳(メタデータ) (2024-03-28T22:25:05Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
本研究では,最新のテキスト・画像生成モデルから生成した合成画像が,画像認識タスクにどのように利用できるかを検討した。
本稿では,既存の生成モデルからの合成データの強大さと欠点を示し,認識タスクに合成データを適用するための戦略を提案する。
論文 参考訳(メタデータ) (2022-10-14T06:54:24Z) - Rethinking Blur Synthesis for Deep Real-World Image Deblurring [4.00114307523959]
本稿では,撮影過程をシミュレートする,新しいリアルなボケ合成パイプラインを提案する。
機能領域における非局所的依存関係と局所的コンテキストを同時にキャプチャする効果的なデブロアリングモデルを開発する。
3つの実世界のデータセットに関する総合的な実験により、提案したデブロアリングモデルは最先端の手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-09-28T06:50:16Z) - Style-Hallucinated Dual Consistency Learning for Domain Generalized
Semantic Segmentation [117.3856882511919]
本稿では、ドメインシフトを処理するためのStyle-HAllucinated Dual consistEncy Learning(SHADE)フレームワークを提案する。
SHADEは3つの実世界のデータセットの平均mIoUに対して5.07%と8.35%の精度で改善し、最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2022-04-06T02:49:06Z) - Partially fake it till you make it: mixing real and fake thermal images
for improved object detection [29.13557322147509]
熱画像における物体検出の文脈における提案システムの性能について述べる。
我々の単一モード検出器はFLIR ADASデータセットの最先端結果を達成する。
論文 参考訳(メタデータ) (2021-06-25T12:56:09Z) - IMAGINE: Image Synthesis by Image-Guided Model Inversion [79.4691654458141]
IMGE-Guided Model INvErsion (IMAGINE) と呼ばれるインバージョンベースの手法を導入し、高品質で多様な画像を生成します。
我々は,事前学習した分類器から画像意味論の知識を活用し,妥当な世代を実現する。
IMAGINEは,1)合成中の意味的特異性制約を同時に実施し,2)ジェネレータトレーニングなしでリアルな画像を生成し,3)生成過程を直感的に制御する。
論文 参考訳(メタデータ) (2021-04-13T02:00:24Z) - Synthetic Data and Hierarchical Object Detection in Overhead Imagery [0.0]
衛星画像における低・ゼロサンプル学習を向上させるための新しい合成データ生成および拡張技術を開発した。
合成画像の有効性を検証するために,検出モデルと2段階モデルの訓練を行い,実際の衛星画像上で得られたモデルを評価する。
論文 参考訳(メタデータ) (2021-01-29T22:52:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。