CUT: A Controllable, Universal, and Training-Free Visual Anomaly Generation Framework
- URL: http://arxiv.org/abs/2406.01078v1
- Date: Mon, 3 Jun 2024 07:58:09 GMT
- Title: CUT: A Controllable, Universal, and Training-Free Visual Anomaly Generation Framework
- Authors: Han Sun, Yunkang Cao, Olga Fink,
- Abstract summary: We propose CUT: a Controllable, Universal and Training-free visual anomaly generation framework.
We achieve controllable and realistic anomaly generation universally across both unseen data and novel anomaly types.
By training the VLAD model with our generated anomalous samples, we achieve state-of-the-art performance on several benchmark anomaly detection tasks.
- Score: 11.609545429511595
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Visual anomaly detection (AD) inherently faces significant challenges due to the scarcity of anomalous data. Although numerous works have been proposed to synthesize anomalous samples, the generated samples often lack authenticity or can only reflect the distribution of the available training data samples. In this work, we propose CUT: a Controllable, Universal and Training-free visual anomaly generation framework, which leverages the capability of Stable Diffusion (SD) in image generation to generate diverse and realistic anomalies. With CUT, we achieve controllable and realistic anomaly generation universally across both unseen data and novel anomaly types, using a single model without acquiring additional training effort. To demonstrate the effectiveness of our approach, we propose a Vision-Language-based Anomaly Detection framework (VLAD). By training the VLAD model with our generated anomalous samples, we achieve state-of-the-art performance on several benchmark anomaly detection tasks, highlighting the significant improvements enabled by our synthetic data.
Related papers
- Leveraging Latent Diffusion Models for Training-Free In-Distribution Data Augmentation for Surface Defect Detection [9.784793380119806]
We introduce DIAG, a training-free Diffusion-based In-distribution Anomaly Generation pipeline for data augmentation.
Unlike conventional image generation techniques, we implement a human-in-the-loop pipeline, where domain experts provide multimodal guidance to the model.
We demonstrate the efficacy and versatility of DIAG with respect to state-of-the-art data augmentation approaches on the challenging KSDD2 dataset.
arXiv Detail & Related papers (2024-07-04T14:28:52Z) - Few-shot Online Anomaly Detection and Segmentation [29.693357653538474]
This paper focuses on addressing the challenging yet practical few-shot online anomaly detection and segmentation (FOADS) task.
Under the FOADS framework, models are trained on a few-shot normal dataset, followed by inspection and improvement of their capabilities by leveraging unlabeled streaming data containing both normal and abnormal samples simultaneously.
In order to achieve improved performance with limited training samples, we employ multi-scale feature embedding extracted from a CNN pre-trained on ImageNet to obtain a robust representation.
arXiv Detail & Related papers (2024-03-27T02:24:00Z) - Toward Generalist Anomaly Detection via In-context Residual Learning with Few-shot Sample Prompts [25.629973843455495]
Generalist Anomaly Detection (GAD) aims to train one single detection model that can generalize to detect anomalies in diverse datasets from different application domains without further training on the target data.
We introduce a novel approach that learns an in-context residual learning model for GAD, termed InCTRL.
InCTRL is the best performer and significantly outperforms state-of-the-art competing methods.
arXiv Detail & Related papers (2024-03-11T08:07:46Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
Anomaly inspection plays an important role in industrial manufacture.
Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data.
We propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model.
arXiv Detail & Related papers (2023-12-10T05:13:40Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - The Eyecandies Dataset for Unsupervised Multimodal Anomaly Detection and
Localization [1.3124513975412255]
Eyecandies is a novel dataset for unsupervised anomaly detection and localization.
Photo-realistic images of procedurally generated candies are rendered in a controlled environment under multiple lightning conditions.
arXiv Detail & Related papers (2022-10-10T11:19:58Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
We consider the problem of building visual anomaly detection systems for mobile robots.
Standard anomaly detection models are trained using large datasets composed only of non-anomalous data.
We tackle the problem of exploiting these data to improve the performance of a Real-NVP anomaly detection model.
arXiv Detail & Related papers (2022-09-20T15:18:13Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.