論文の概要: Logical Reasoning with Relation Network for Inductive Knowledge Graph Completion
- arxiv url: http://arxiv.org/abs/2406.01140v1
- Date: Mon, 3 Jun 2024 09:30:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 01:38:29.350442
- Title: Logical Reasoning with Relation Network for Inductive Knowledge Graph Completion
- Title(参考訳): 帰納的知識グラフ補完のための関係ネットワークを用いた論理推論
- Authors: Qinggang Zhang, Keyu Duan, Junnan Dong, Pai Zheng, Xiao Huang,
- Abstract要約: 帰納的KG完了のための新しいiNfOmax RelAtion Network(NORAN)を提案する。
我々のフレームワークは最先端のKGC手法よりも大幅に優れています。
- 参考スコア(独自算出の注目度): 9.815135283458808
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Inductive knowledge graph completion (KGC) aims to infer the missing relation for a set of newly-coming entities that never appeared in the training set. Such a setting is more in line with reality, as real-world KGs are constantly evolving and introducing new knowledge. Recent studies have shown promising results using message passing over subgraphs to embed newly-coming entities for inductive KGC. However, the inductive capability of these methods is usually limited by two key issues. (i) KGC always suffers from data sparsity, and the situation is even exacerbated in inductive KGC where new entities often have few or no connections to the original KG. (ii) Cold-start problem. It is over coarse-grained for accurate KG reasoning to generate representations for new entities by gathering the local information from few neighbors. To this end, we propose a novel iNfOmax RelAtion Network, namely NORAN, for inductive KG completion. It aims to mine latent relation patterns for inductive KG completion. Specifically, by centering on relations, NORAN provides a hyper view towards KG modeling, where the correlations between relations can be naturally captured as entity-independent logical evidence to conduct inductive KGC. Extensive experiment results on five benchmarks show that our framework substantially outperforms the state-of-the-art KGC methods.
- Abstract(参考訳): 帰納的知識グラフ補完(KGC)は、トレーニングセットに現れない新しいエンティティセットの欠落を推測することを目的としている。
現実世界のKGは絶えず進化し、新しい知識を導入している。
近年の研究では,KGCに新たなエンティティを組み込むために,サブグラフ上でのメッセージパッシングを用いた有望な結果が示されている。
しかしながら、これらの手法の帰納的能力は通常2つの重要な問題によって制限される。
i) KGCは常にデータ疎結合に悩まされており、新しいエンティティが元のKGとほとんど、あるいは全く関係のないインダクティブKGCでは、状況はさらに悪化している。
(II)コールドスタート問題
正確なKG推論では、少数の隣人からローカル情報を収集することで、新しいエンティティの表現を生成するために粗い粒度を超越している。
この目的のために、誘導KG完了のための新しいiNfOmax RelAtion Network、すなわちNORANを提案する。
帰納的KG完了のための潜在関係パターンの抽出を目的とする。
具体的には、関係に集中することにより、NORANはKGモデリングに対するハイパービューを提供し、関係間の相関は帰納的KGCを実行するための実体に依存しない論理的証拠として自然に捉えることができる。
5つのベンチマークの大規模な実験結果から、我々のフレームワークは最先端のKGC手法よりも大幅に優れていることが示された。
関連論文リスト
- Exploiting Large Language Models Capabilities for Question Answer-Driven Knowledge Graph Completion Across Static and Temporal Domains [8.472388165833292]
本稿では,GS-KGC(Generative Subgraph-based KGC)と呼ばれる新しい生成完了フレームワークを提案する。
GS-KGCは、ターゲットエンティティを直接生成するために質問応答形式を採用し、複数の可能な答えを持つ質問の課題に対処する。
本手法は,新たな情報発見を容易にするために,既知の事実を用いて負のサンプルを生成する。
論文 参考訳(メタデータ) (2024-08-20T13:13:41Z) - Normalizing Flow-based Neural Process for Few-Shot Knowledge Graph
Completion [69.55700751102376]
FKGC (Few-shot Knowledge Graph completion) は、失明した事実を、無意味な関連のある事実で予測することを目的としている。
既存のFKGC手法はメートル法学習やメタラーニングに基づいており、しばしば分布外や過度に適合する問題に悩まされる。
本稿では,数ショット知識グラフ補完(NP-FKGC)のためのフローベースニューラルプロセスの正規化を提案する。
論文 参考訳(メタデータ) (2023-04-17T11:42:28Z) - Meta-Learning Based Knowledge Extrapolation for Temporal Knowledge Graph [4.103806361930888]
時間的KG(TKG)は、静的トリプルとタイムスタンプを関連付けることで従来の知識グラフを拡張する。
本稿では,メタラーニングに基づく時間知識グラフ外挿法(MTKGE)モデルを提案する。
MTKGEは知識グラフ外挿法において既存の最先端モデルよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T09:52:26Z) - Relational Message Passing for Fully Inductive Knowledge Graph
Completion [37.29833710603933]
知識グラフ補完(KGC)では、KG埋め込みが学習されると見つからない新しい実体や関係を含む三重項を予測することが重要な課題となっている。
メッセージパッシングによるサブグラフ推論は、有望で人気のあるソリューションである。
そこで本研究では,新しいメッセージパッシングネットワークを用いたRMPIという手法を提案する。
論文 参考訳(メタデータ) (2022-10-08T10:35:52Z) - Disconnected Emerging Knowledge Graph Oriented Inductive Link Prediction [0.0]
我々はDECG-ILP(Disconnect Emerging Knowledge Graph Oriented Inductive Link Prediction)という新しいモデルを提案する。
CLRMは、元のKGとDECG間で共有されるグローバルな関係に基づく意味的特徴を抽出するために開発された。
モジュールGSMは、各リンク周辺の局所部分グラフトポロジ情報をKGで抽出するために提案される。
論文 参考訳(メタデータ) (2022-09-03T10:58:24Z) - Inductive Knowledge Graph Reasoning for Multi-batch Emerging Entities [22.88552158340435]
既存のインダクティブな作業は、新しいエンティティがすべてバッチで1度現れていると仮定します。
この研究は、複数のバッチに新しいエンティティが出現する、より現実的で困難な状況に飛び込んでいます。
そこで我々は,新しい環境に適応するための,歩行に基づく帰納的推論モデルを提案する。
論文 参考訳(メタデータ) (2022-08-22T14:59:19Z) - Explainable Sparse Knowledge Graph Completion via High-order Graph
Reasoning Network [111.67744771462873]
本稿では,スパース知識グラフ(KG)のための新しい説明可能なモデルを提案する。
高次推論をグラフ畳み込みネットワーク、すなわちHoGRNに結合する。
情報不足を緩和する一般化能力を向上させるだけでなく、解釈可能性も向上する。
論文 参考訳(メタデータ) (2022-07-14T10:16:56Z) - Rethinking Graph Convolutional Networks in Knowledge Graph Completion [83.25075514036183]
グラフ畳み込みネットワーク(GCN)は知識グラフ補完(KGC)においてますます人気が高まっている。
本稿では,代表的なGCNベースのKGCモデルを構築し,GCNのどの要因がKGCに重要なのかを明らかにする。
本稿では,既存のKGEモデルに線形変換されたエンティティ埋め込みを組み込む,LTE-KGEというシンプルなフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-08T11:36:18Z) - Temporal Knowledge Graph Reasoning Based on Evolutional Representation
Learning [59.004025528223025]
将来の事実を予測する鍵は、歴史的事実を徹底的に理解することです。
TKGは実際には異なるタイムスタンプに対応するKGのシーケンスである。
グラフ畳み込みネットワーク(GCN)に基づく新しいリカレント進化ネットワークを提案する。
論文 参考訳(メタデータ) (2021-04-21T05:12:21Z) - Inductive Learning on Commonsense Knowledge Graph Completion [89.72388313527296]
コモンセンス知識グラフ(英: Commonsense Knowledge graph、CKG)は、知識グラフ(英: knowledge graph、CKG)の一種。
本稿では,未確認のエンティティがテスト時に現れるCKG完了のための帰納学習環境について検討する。
InductivEは、ATOMICとConceptNetベンチマークの標準設定とインダクティブ設定の両方において、最先端のベースラインを大幅に上回っている。
論文 参考訳(メタデータ) (2020-09-19T16:10:26Z) - Generative Adversarial Zero-Shot Relational Learning for Knowledge
Graphs [96.73259297063619]
我々は、この厄介なキュレーションを解放するために、新しい定式化、ゼロショット学習を考える。
新たに追加された関係について,テキスト記述から意味的特徴を学習しようと試みる。
我々は,GAN(Generative Adrial Networks)を活用し,テキストと知識グラフ領域の接続を確立する。
論文 参考訳(メタデータ) (2020-01-08T01:19:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。