論文の概要: EduNLP: Towards a Unified and Modularized Library for Educational Resources
- arxiv url: http://arxiv.org/abs/2406.01276v2
- Date: Tue, 4 Jun 2024 11:44:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 01:09:07.013820
- Title: EduNLP: Towards a Unified and Modularized Library for Educational Resources
- Title(参考訳): EduNLP:教育資源の統一化とモジュール化を目指して
- Authors: Zhenya Huang, Yuting Ning, Longhu Qin, Shiwei Tong, Shangzi Xue, Tong Xiao, Xin Lin, Jiayu Liu, Qi Liu, Enhong Chen, Shijing Wang,
- Abstract要約: 我々はEduNLPという,統一された,モジュール化された,広範なライブラリを紹介し,教育資源の理解に焦点をあてる。
このライブラリでは、ワークフロー全体を4つのキーモジュールに分離し、データ構成、処理、モデル実装、モデル評価など、一貫したインターフェースを提供します。
現在のバージョンでは、主に4つのカテゴリから10の典型的なモデルを提供し、教育領域における5つのダウンストリーム評価タスクを、ユーザの使用に対して8つの被験者に提供します。
- 参考スコア(独自算出の注目度): 78.8523961816045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Educational resource understanding is vital to online learning platforms, which have demonstrated growing applications recently. However, researchers and developers always struggle with using existing general natural language toolkits or domain-specific models. The issue raises a need to develop an effective and easy-to-use one that benefits AI education-related research and applications. To bridge this gap, we present a unified, modularized, and extensive library, EduNLP, focusing on educational resource understanding. In the library, we decouple the whole workflow to four key modules with consistent interfaces including data configuration, processing, model implementation, and model evaluation. We also provide a configurable pipeline to unify the data usage and model usage in standard ways, where users can customize their own needs. For the current version, we primarily provide 10 typical models from four categories, and 5 common downstream-evaluation tasks in the education domain on 8 subjects for users' usage. The project is released at: https://github.com/bigdata-ustc/EduNLP.
- Abstract(参考訳): オンライン学習プラットフォームでは教育資源の理解が不可欠である。
しかしながら、研究者や開発者は、常に既存の汎用自然言語ツールキットやドメイン固有モデルの使用に苦労している。
この問題は、AI教育関連の研究や応用に役立つ効果的で使いやすいものを開発する必要性を高めている。
このギャップを埋めるため、我々はEduNLP(EduNLP)という統一的でモジュール化され、広範なライブラリを提示し、教育資源の理解に焦点を当てた。
このライブラリでは、ワークフロー全体を4つのキーモジュールに分離し、データ構成、処理、モデル実装、モデル評価など、一貫したインターフェースを提供します。
また、ユーザが自身のニーズをカスタマイズできるように、標準的な方法でデータ使用量とモデル使用量を統一するための設定可能なパイプラインも提供しています。
現在のバージョンでは、主に4つのカテゴリから10の典型的なモデルを提供し、教育領域における5つのダウンストリーム評価タスクを、ユーザの使用に対して8つの被験者に提供します。
このプロジェクトは、https://github.com/bigdata-ustc/EduNLPでリリースされている。
関連論文リスト
- A Practitioner's Guide to Continual Multimodal Pretraining [83.63894495064855]
マルチモーダル・ファンデーション・モデルは視覚と言語を交わす多くのアプリケーションに役立っている。
モデルを更新し続けるために、継続事前トレーニングの研究は主に、大規模な新しいデータに対する頻度の低い、差別的な更新、あるいは頻繁に行われるサンプルレベルの更新のシナリオを探求する。
本稿では,FoMo-in-Flux(FoMo-in-Flux)について紹介する。
論文 参考訳(メタデータ) (2024-08-26T17:59:01Z) - CMULAB: An Open-Source Framework for Training and Deployment of Natural Language Processing Models [59.91221728187576]
本稿では,NLPモデルのモデル展開と連続的なヒューマン・イン・ザ・ループの微調整を簡単にするオープンソースフレームワークであるCMU言語バックエンドを紹介する。
CMULABは、マルチ言語モデルのパワーを活用して、音声認識、OCR、翻訳、構文解析などの既存のツールを新しい言語に迅速に適応し、拡張することができる。
論文 参考訳(メタデータ) (2024-04-03T02:21:46Z) - A Toolbox for Modelling Engagement with Educational Videos [21.639063299289607]
この作業では、データセットとオンライン学習者の状態モデルを含むPEEKCデータセットとTrueLearn Pythonライブラリを提示する。
このデータセットには、AI関連の教育ビデオが多数含まれており、AI固有の教育レコメンデーションの構築と検証に関心がある。
論文 参考訳(メタデータ) (2023-12-30T21:10:55Z) - Adapting Large Language Models for Content Moderation: Pitfalls in Data
Engineering and Supervised Fine-tuning [79.53130089003986]
大規模言語モデル(LLM)は、様々なドメインでタスクを処理するための実現可能なソリューションとなっている。
本稿では、コンテンツモデレーションのためにプライベートにデプロイ可能なLLMモデルを微調整する方法を紹介する。
論文 参考訳(メタデータ) (2023-10-05T09:09:44Z) - CodeGen2: Lessons for Training LLMs on Programming and Natural Languages [116.74407069443895]
我々はエンコーダとデコーダベースのモデルを単一のプレフィックスLMに統一する。
学習方法は,「フリーランチ」仮説の主張を考察する。
データ配信においては,混合分布と多言語学習がモデル性能に及ぼす影響について検討した。
論文 参考訳(メタデータ) (2023-05-03T17:55:25Z) - Modular Deep Learning [120.36599591042908]
トランスファーラーニングは近年、機械学習の主要なパラダイムとなっている。
負の干渉を伴わずに複数のタスクを専門とするモデルを開発する方法はまだ不明である。
これらの課題に対する有望な解決策として、モジュール型ディープラーニングが登場した。
論文 参考訳(メタデータ) (2023-02-22T18:11:25Z) - Beyond Just Vision: A Review on Self-Supervised Representation Learning
on Multimodal and Temporal Data [10.006890915441987]
自己教師型学習の普及は、従来のモデルがトレーニングに大量の十分な注釈付きデータを必要とするという事実によって引き起こされる。
モデルの差別的事前学習を通じて、訓練データの効率を向上させるための自己指導手法が導入された。
我々は,時間的データに対するマルチモーダルな自己教師型学習手法の総合的なレビューを初めて提供することを目的とする。
論文 参考訳(メタデータ) (2022-06-06T04:59:44Z) - AdapterHub Playground: Simple and Flexible Few-Shot Learning with
Adapters [34.86139827292556]
事前訓練された言語モデルのオープンアクセスの普及は、最先端自然言語処理(NLP)研究の民主化につながった。
これにより、NLP以外の人たちでも、そのようなモデルを使用して、特定のユースケースに適応することが可能になります。
本研究では,一行のコードを書かずに事前学習したモデルを活用できるツールを提供することで,このギャップを克服することを目指している。
論文 参考訳(メタデータ) (2021-08-18T11:56:01Z) - Sim-Env: Decoupling OpenAI Gym Environments from Simulation Models [0.0]
強化学習(RL)は、AI研究の最も活発な分野の1つです。
開発方法論はまだ遅れており、RLアプリケーションの開発を促進するための標準APIが不足している。
多目的エージェントベースのモデルと派生した単一目的強化学習環境の分離開発と保守のためのワークフローとツールを提示する。
論文 参考訳(メタデータ) (2021-02-19T09:25:21Z) - Improving Deep Learning Models via Constraint-Based Domain Knowledge: a
Brief Survey [11.034875974800487]
本稿では、ディープラーニング(DL)学習モデルにおいて、制約の形で表現されたドメイン知識を統合するために考案されたアプローチを初めて調査する。
1)特徴空間に作用する,2)仮説空間の変更,3)データ拡張,4)正規化スキーム,5)制約付き学習。
論文 参考訳(メタデータ) (2020-05-19T15:34:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。