論文の概要: CMULAB: An Open-Source Framework for Training and Deployment of Natural Language Processing Models
- arxiv url: http://arxiv.org/abs/2404.02408v1
- Date: Wed, 3 Apr 2024 02:21:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 18:49:24.880503
- Title: CMULAB: An Open-Source Framework for Training and Deployment of Natural Language Processing Models
- Title(参考訳): CMULAB:自然言語処理モデルのトレーニングとデプロイのためのオープンソースフレームワーク
- Authors: Zaid Sheikh, Antonios Anastasopoulos, Shruti Rijhwani, Lindia Tjuatja, Robbie Jimerson, Graham Neubig,
- Abstract要約: 本稿では,NLPモデルのモデル展開と連続的なヒューマン・イン・ザ・ループの微調整を簡単にするオープンソースフレームワークであるCMU言語バックエンドを紹介する。
CMULABは、マルチ言語モデルのパワーを活用して、音声認識、OCR、翻訳、構文解析などの既存のツールを新しい言語に迅速に適応し、拡張することができる。
- 参考スコア(独自算出の注目度): 59.91221728187576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effectively using Natural Language Processing (NLP) tools in under-resourced languages requires a thorough understanding of the language itself, familiarity with the latest models and training methodologies, and technical expertise to deploy these models. This could present a significant obstacle for language community members and linguists to use NLP tools. This paper introduces the CMU Linguistic Annotation Backend, an open-source framework that simplifies model deployment and continuous human-in-the-loop fine-tuning of NLP models. CMULAB enables users to leverage the power of multilingual models to quickly adapt and extend existing tools for speech recognition, OCR, translation, and syntactic analysis to new languages, even with limited training data. We describe various tools and APIs that are currently available and how developers can easily add new models/functionality to the framework. Code is available at https://github.com/neulab/cmulab along with a live demo at https://cmulab.dev
- Abstract(参考訳): オープンソースでない言語でNLP(Natural Language Processing)ツールを効果的に使用するには、言語自体の理解、最新のモデルやトレーニング方法論への慣れ、これらのモデルをデプロイするための技術的専門知識が必要である。
これは言語コミュニティのメンバや言語学者がNLPツールを使用する上で大きな障害となる可能性がある。
本稿では,NLPモデルのモデル展開と連続的なヒューマン・イン・ザ・ループ微調整を簡単にするオープンソースフレームワークであるCMU言語アノテーションバックエンドを紹介する。
CMULABは、マルチ言語モデルのパワーを活用して、限られたトレーニングデータであっても、音声認識、OCR、翻訳、構文解析といった既存のツールを新しい言語に迅速に適応し、拡張することができる。
現在利用可能なさまざまなツールやAPI、開発者がフレームワークに新しいモデルや機能を簡単に追加できる方法について述べています。
コードはhttps://github.com/neulab/cmulabで、ライブデモはhttps://cmulab.devで公開されている。
関連論文リスト
- Towards a More Inclusive AI: Progress and Perspectives in Large Language Model Training for the Sámi Language [7.289015788793582]
本研究は、S'ami言語における技術参加の増大に焦点を当てている。
我々は,Ultra Low Resource (ULR)言語の言語モデリング問題に対して,MLコミュニティの注目を集めている。
Webから利用可能なS'ami言語リソースをコンパイルして、言語モデルをトレーニングするためのクリーンなデータセットを作成しました。
論文 参考訳(メタデータ) (2024-05-09T13:54:22Z) - Lemur: Harmonizing Natural Language and Code for Language Agents [105.43564788499901]
自然言語とコーディング機能の両方に最適化されたオープンソースの言語モデルであるLemurとLemur-Chatを紹介する。
我々のモデルは、様々なテキストおよびコーディングベンチマークで最先端の平均性能を達成する。
自然言語とプログラミング言語の調和により、Lemur-Chatはエージェント能力に関するプロプライエタリなモデルとのギャップを著しく狭めることができる。
論文 参考訳(メタデータ) (2023-10-10T17:57:45Z) - Improving Language Plasticity via Pretraining with Active Forgetting [63.36484652568976]
本稿では,新しい言語に迅速に適応可能な PLM を作成する簡単な方法として,事前学習中に能動的に忘れる機構を提案する。
RoBERTaを用いた実験では、忘れるメカニズムで事前訓練されたモデルは、言語適応中により高速な収束を示す。
論文 参考訳(メタデータ) (2023-07-03T17:12:44Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
本稿では,インスタンスを条件付きで符号化するためのフレキシブルガイダンスとして,コンテキスト的にプロンプトを検索するXLM-Pを提案する。
我々のXLM-Pは、(1)言語間における言語不変および言語固有知識の軽量なモデリングを可能にし、(2)他の多言語事前学習手法との容易な統合を可能にする。
論文 参考訳(メタデータ) (2023-06-13T08:08:08Z) - AfroLM: A Self-Active Learning-based Multilingual Pretrained Language
Model for 23 African Languages [0.021987601456703476]
AfroLMは、23のアフリカ語でスクラッチから事前訓練された多言語言語モデルである。
AfroLMは、既存のベースラインよりも小さいデータセット14xで事前訓練される。
様々な領域にまたがってうまく一般化することができる。
論文 参考訳(メタデータ) (2022-11-07T02:15:25Z) - Generalizing Multimodal Pre-training into Multilingual via Language
Acquisition [54.69707237195554]
英語のVision-Language Pre-Trainingは、様々な下流タスクで大きな成功を収めた。
この成功を英語以外の言語に一般化するために、Multilingual Vision-Language Pre-Trainingを通じていくつかの取り組みがなされている。
単言語視覚言語事前学習モデルを多言語に容易に一般化できるtextbfMultitextbfLingual textbfAcquisition (MLA) フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-29T08:53:22Z) - LaoPLM: Pre-trained Language Models for Lao [3.2146309563776416]
事前訓練された言語モデル(PLM)は、コンテキストにおける異なるレベルの概念をキャプチャし、普遍的な言語表現を生成する。
PTMは、ほとんどのNLPアプリケーションで広く使われているが、Lao NLP研究ではあまり使われていない。
ラオス語の資源管理状況を軽減するために,テキスト分類データセットを構築した。
本稿では,ラオスにおけるトランスフォーマーベースのPTMを,BERT-small,BERT-base,ELECTRA-small,ELECTRA-baseの4つのバージョンで提案する。
論文 参考訳(メタデータ) (2021-10-12T11:13:07Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z) - Evaluating Cross-Lingual Transfer Learning Approaches in Multilingual
Conversational Agent Models [1.52292571922932]
自然言語理解(NLU)モデルのための汎用多言語モデルフレームワークを提案する。
これらの多言語モデルが,言語固有のテストデータにまたがる単言語モデルと比較して,同等あるいは優れた性能に到達できることを示す。
論文 参考訳(メタデータ) (2020-12-07T17:14:52Z) - WikiBERT models: deep transfer learning for many languages [1.3455090151301572]
ウィキペディアデータから言語固有のBERTモデルを作成するための、単純で完全に自動化されたパイプラインを導入します。
我々は,これらのモデルの有効性を,Universal Dependenciesデータに基づく最先端のUDifyを用いて評価する。
論文 参考訳(メタデータ) (2020-06-02T11:57:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。