論文の概要: R2C2-Coder: Enhancing and Benchmarking Real-world Repository-level Code Completion Abilities of Code Large Language Models
- arxiv url: http://arxiv.org/abs/2406.01359v3
- Date: Thu, 04 Sep 2025 16:26:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-05 20:21:09.860217
- Title: R2C2-Coder: Enhancing and Benchmarking Real-world Repository-level Code Completion Abilities of Code Large Language Models
- Title(参考訳): R2C2-Coder: 大規模言語モデルの実世界のリポジトリレベルのコード補完能力の強化とベンチマーク
- Authors: Ken Deng, Jiaheng Liu, He Zhu, Congnan Liu, Jingxin Li, Jiakai Wang, Peng Zhao, Chenchen Zhang, Yanan Wu, Xueqiao Yin, Yuanxing Zhang, Zizheng Zhan, Wenbo Su, Bangyu Xiang, Tiezheng Ge, Bo Zheng,
- Abstract要約: 我々は,R2C2-Coderを提案し,大規模言語モデルの実世界のリポジトリレベルのコード補完能力を向上し,ベンチマークする。
R2C2-Coderには、コードプロンプトコンストラクションメソッドR2C2-Enhanceと、よく設計されたベンチマークR2C2-Benchが含まれている。
- 参考スコア(独自算出の注目度): 62.20537000942005
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Code completion models have made significant progress in recent years. Recently, repository-level code completion has drawn more attention in modern software development, and several baseline methods and benchmarks have been proposed. However, existing repository-level code completion methods often fall short of fully using the extensive context of a project repository, such as the intricacies of relevant files and class hierarchies. Besides, the existing benchmarks usually focus on limited code completion scenarios, which cannot reflect the repository-level code completion abilities well of existing methods. To address these limitations, we propose the R2C2-Coder to enhance and benchmark the real-world repository-level code completion abilities of code Large Language Models, where the R2C2-Coder includes a code prompt construction method R2C2-Enhance and a well-designed benchmark R2C2-Bench. Specifically, first, in R2C2-Enhance, we first construct the candidate retrieval pool and then assemble the completion prompt by retrieving from the retrieval pool for each completion cursor position. Second, based on R2C2 -Enhance, we can construct a more challenging and diverse R2C2-Bench with training, validation and test splits, where a context perturbation strategy is proposed to simulate the real-world repository-level code completion well. Extensive results on multiple benchmarks demonstrate the effectiveness of our R2C2-Coder.
- Abstract(参考訳): コード補完モデルは近年大きく進歩している。
近年,現代的なソフトウェア開発においてリポジトリレベルのコード補完が注目され,いくつかのベースラインメソッドやベンチマークが提案されている。
しかしながら、既存のリポジトリレベルのコード補完メソッドは、関連するファイルやクラス階層の複雑さなど、プロジェクトリポジトリの広範なコンテキストを完全に使用できないことが多い。
さらに、既存のベンチマークは、通常、制限されたコード補完シナリオにフォーカスする。
これらの制約に対処するため、R2C2-Coderは、コードプロンプト構築法R2C2-Enhanceとよく設計されたベンチマークR2C2-Benchを含むLarge Language Modelsの実際のリポジトリレベルのコード補完能力を向上し、ベンチマークするR2C2-Coderを提案する。
具体的には、まずR2C2-Enhanceにおいて、まず候補検索プールを構築し、次に各完了カーソル位置に対して検索プールから検索して完了プロンプトを組み立てる。
第二に、R2C2-Enhanceに基づいて、トレーニング、検証、テストの分割により、より困難で多様なR2C2-Benchを構築することができます。
複数のベンチマークの結果は、我々のR2C2-Coderの有効性を示している。
関連論文リスト
- Turning the Tide: Repository-based Code Reflection [52.13709676656648]
マルチファイルリポジトリコンテキストにおけるコード理解と生成を評価するベンチマークであるLiveRepoReflectionを紹介する。
多様性、正確性、難易度を確保するため、6ドル(約6,800円)のプログラミング言語で厳格にテストケースをフィルタリングしました。
RepoReflection-Instructは、さまざまなソースから派生した大規模で品質の高い命令チューニングデータセットである。
論文 参考訳(メタデータ) (2025-07-14T02:36:27Z) - Paper2Code: Automating Code Generation from Scientific Papers in Machine Learning [57.09163579304332]
機械学習論文を機能コードリポジトリに変換するフレームワークであるPaperCoderを紹介した。
PaperCoderは3つの段階で動作する。計画、図によるシステムアーキテクチャの設計、ファイル依存の特定、構成ファイルの生成である。
次に、モデルベースおよび人的評価の両方に基づいて、機械学習論文からコード実装を生成するPaperCoderを評価する。
論文 参考訳(メタデータ) (2025-04-24T01:57:01Z) - ExecRepoBench: Multi-level Executable Code Completion Evaluation [45.963424627710765]
本稿では,リポジトリレベルのベンチマークであるExecRepoBenchの作成を通じて,ソフトウェア開発におけるコード補完を強化する新しいフレームワークを紹介する。
本稿では,抽象構文木をベースとした多段階文法ベースの補完手法を提案し,様々な論理単位のコードフラグメントをマスキングする。
次に,Repo-Instruct の 7B パラメータでオープンソースの LLM を微調整し,強力なコード補完ベースラインモデル Qwen2.5-Coder-Instruct-C を生成する。
論文 参考訳(メタデータ) (2024-12-16T17:14:35Z) - Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion? [60.84912551069379]
Code-Development Benchmark (Codev-Bench)は、細粒度で現実世界、リポジトリレベル、開発者中心の評価フレームワークです。
Codev-Agentは、リポジトリのクローリングを自動化し、実行環境を構築し、既存のユニットテストから動的呼び出しチェーンを抽出し、データ漏洩を避けるために新しいテストサンプルを生成するエージェントベースのシステムである。
論文 参考訳(メタデータ) (2024-10-02T09:11:10Z) - Hierarchical Context Pruning: Optimizing Real-World Code Completion with Repository-Level Pretrained Code LLMs [24.00351065427465]
本稿では,階層型コンテキストプルーニング(HCP)という戦略を提案し,高い情報量を持つコンプリートプロンプトを構築する。
HCPは関数レベルでコードリポジトリをモデル化し、コードファイル間のトポロジ的な依存関係を維持しながら、大量の無関係なコードコンテンツを削除する。
論文 参考訳(メタデータ) (2024-06-26T12:26:16Z) - CodeRAG-Bench: Can Retrieval Augment Code Generation? [78.37076502395699]
検索拡張生成を用いたコード生成の系統的,大規模な解析を行う。
まず、コード生成タスクの3つのカテゴリを含む総合的な評価ベンチマークであるCodeRAG-Benchをキュレートする。
CodeRAG-Bench上のトップパフォーマンスモデルについて、1つまたは複数のソースから検索したコンテキストを提供することにより検討する。
論文 参考訳(メタデータ) (2024-06-20T16:59:52Z) - On the Impacts of Contexts on Repository-Level Code Generation [5.641402231731082]
リポジトリレベルのコード生成を評価するために設計された新しいベンチマークである textbfmethodnamews を提案する。
実行可能性、包括的なテストケース生成による機能的正当性、ファイル間のコンテキストの正確な利用という3つの重要な側面に注目します。
論文 参考訳(メタデータ) (2024-06-17T10:45:22Z) - VersiCode: Towards Version-controllable Code Generation [58.82709231906735]
大規模言語モデル(LLM)は、コード生成において大きな進歩を遂げていますが、既存の研究は、ソフトウェア開発の動的な性質を説明できません。
バージョン別コード補完(VSCC)とバージョン別コードマイグレーション(VACM)の2つの新しいタスクを提案する。
VersiCodeについて広範な評価を行い、バージョン管理可能なコード生成が確かに重要な課題であることを示した。
論文 参考訳(メタデータ) (2024-06-11T16:15:06Z) - Repoformer: Selective Retrieval for Repository-Level Code Completion [30.706277772743615]
検索強化生成(RAG)の最近の進歩は、リポジトリレベルのコード補完の新たな時代が始まった。
本稿では,不要な場合の検索を回避するため,選択的なRAGフレームワークを提案する。
我々のフレームワークは、異なる世代モデル、レトリバー、プログラミング言語に対応できることを示します。
論文 参考訳(メタデータ) (2024-03-15T06:59:43Z) - RepoHyper: Search-Expand-Refine on Semantic Graphs for Repository-Level Code Completion [12.173834895070827]
Toolは、リポジトリレベルのコード補完に関連する複雑な問題に対処するために設計されたフレームワークである。
Em Repoレベルセマンティックグラフ(RSG)は、コードリポジトリの広大なコンテキストをカプセル化する、新しいセマンティックグラフ構造である。
評価の結果,ツールがリポジトリレベルのコード補完において,既存のテクニックを著しく上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2024-03-10T05:10:34Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - RepoCoder: Repository-Level Code Completion Through Iterative Retrieval
and Generation [96.75695811963242]
RepoCoderはリポジトリレベルのコード補完プロセスを合理化するフレームワークである。
類似性ベースのレトリバーと、事前訓練されたコード言語モデルが組み込まれている。
バニラ検索で拡張されたコード補完アプローチよりも一貫して優れています。
論文 参考訳(メタデータ) (2023-03-22T13:54:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。