論文の概要: Privacy in LLM-based Recommendation: Recent Advances and Future Directions
- arxiv url: http://arxiv.org/abs/2406.01363v1
- Date: Mon, 3 Jun 2024 14:31:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 22:49:47.407723
- Title: Privacy in LLM-based Recommendation: Recent Advances and Future Directions
- Title(参考訳): LLMによるリコメンデーションのプライバシ:最近の進歩と今後の方向性
- Authors: Sichun Luo, Wei Shao, Yuxuan Yao, Jian Xu, Mingyang Liu, Qintong Li, Bowei He, Maolin Wang, Guanzhi Deng, Hanxu Hou, Xinyi Zhang, Linqi Song,
- Abstract要約: 大規模言語モデル(LLM)は従来のレコメンデーションモデルと統合され、レコメンデーション性能が向上した。
本稿では,LLMに基づくレコメンデーションにおけるプライバシの最近の進歩を概観し,プライバシ攻撃と保護機構に分類する。
- 参考スコア(独自算出の注目度): 28.74960063808577
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nowadays, large language models (LLMs) have been integrated with conventional recommendation models to improve recommendation performance. However, while most of the existing works have focused on improving the model performance, the privacy issue has only received comparatively less attention. In this paper, we review recent advancements in privacy within LLM-based recommendation, categorizing them into privacy attacks and protection mechanisms. Additionally, we highlight several challenges and propose future directions for the community to address these critical problems.
- Abstract(参考訳): 近年,大規模言語モデル (LLM) と従来のレコメンデーションモデルが統合され,レコメンデーション性能が向上している。
しかしながら、既存の作業の多くはモデルパフォーマンスの改善に重点を置いているものの、プライバシ問題は比較的少ない関心しか寄せられていない。
本稿では,LLMに基づくレコメンデーションにおけるプライバシの最近の進歩を概観し,プライバシ攻撃と保護機構に分類する。
さらに、いくつかの課題を強調し、これらの重要な問題に対処するためのコミュニティの今後の方向性を提案する。
関連論文リスト
- Exposing Privacy Gaps: Membership Inference Attack on Preference Data for LLM Alignment [8.028743532294532]
そこで我々は、PreMIAと呼ばれる嗜好データを分析するための新しい参照ベースアタックフレームワークを提案する。
PPOモデルと比較してDPOモデルの方がMIAに弱いという実証的な証拠を提供する。
論文 参考訳(メタデータ) (2024-07-08T22:53:23Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
複数の参照モデルを用いた直接選好最適化のための新しいクローズドフォームの定式化を提案する。
得られたアルゴリズムであるMulti-Reference Preference Optimization (MRPO)は、様々な参照モデルからより広範な事前知識を活用する。
MRPOを微調整したLLMは,データ不足や多量性に関わらず,様々な嗜好データにおいてより一般化されていることを示す。
論文 参考訳(メタデータ) (2024-05-26T00:29:04Z) - The Good and The Bad: Exploring Privacy Issues in Retrieval-Augmented
Generation (RAG) [56.67603627046346]
Retrieval-augmented Generation (RAG)は、プロプライエタリおよびプライベートデータによる言語モデルを容易にする強力な技術である。
本研究では,プライベート検索データベースの漏洩に対するRAGシステムの脆弱性を実証する,新たな攻撃手法による実証的研究を行う。
論文 参考訳(メタデータ) (2024-02-23T18:35:15Z) - Stealthy Attack on Large Language Model based Recommendation [24.51398285321322]
大規模言語モデル (LLM) はレコメンダシステム (RS) の進歩を推進している。
本研究では,レコメンデーションモデルにLSMを導入することで,項目のテキスト内容に重点を置いているため,新たなセキュリティ脆弱性が生じることを明らかにした。
攻撃者は、テストフェーズ中に単にテキストの内容を変更するだけで、アイテムの露出を大幅に向上させることができることを実証する。
論文 参考訳(メタデータ) (2024-02-18T16:51:02Z) - Privacy in Large Language Models: Attacks, Defenses and Future
Directions [46.30861174408193]
大規模言語モデル(LLM)を対象とした現在のプライバシ攻撃を分析し、敵の想定能力に応じて分類する。
本稿では、これらのプライバシー攻撃に対抗するために開発された防衛戦略について概説する。
論文 参考訳(メタデータ) (2023-10-16T13:23:54Z) - Hide and Seek (HaS): A Lightweight Framework for Prompt Privacy
Protection [6.201275002179716]
本稿では,H(ide)" と "S(eek)" の2つのコアプロセスとして,匿名化のためのプライベートエンティティの隠蔽と非匿名化のためのプライベートエンティティの検索を行うHaSフレームワークを紹介する。
本研究では,HaSのプライバシー保護性能を定量的に評価するために,ブラックボックスモデルとホワイトボックスモデルの両方を提案する。
論文 参考訳(メタデータ) (2023-09-06T14:54:11Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
推奨領域におけるLarge Language Models (LLMs) の適用について, 十分に検討されていない。
我々は、評価予測、シーケンシャルレコメンデーション、直接レコメンデーション、説明生成、レビュー要約を含む5つのレコメンデーションタスクにおいて、市販のLLMをベンチマークする。
ベンチマークの結果,LLMは逐次的・直接的推薦といった精度に基づくタスクにおいて適度な熟練度しか示さないことがわかった。
論文 参考訳(メタデータ) (2023-08-23T16:32:54Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野で強力なツールとして登場した。
本調査では,これらのモデルを2つの主要なパラダイム(DLLM4Rec)とジェネレーティブLSM4Rec(GLLM4Rec)に分類する。
論文 参考訳(メタデータ) (2023-05-31T13:51:26Z) - A Federated Multi-View Deep Learning Framework for Privacy-Preserving
Recommendations [25.484225182093947]
プライバシー保護の勧告は、ユーザーのプライバシーとデータセキュリティに対する懸念から、勢いを増している。
FedRecアルゴリズムは、パーソナライズされたプライバシー保護レコメンデーションを実現するために提案されている。
本稿では,汎用コンテンツベースフェデレーション型マルチビューレコメンデーションフレームワークFLMV-DSSMを提案する。
論文 参考訳(メタデータ) (2020-08-25T04:19:40Z) - Reward Constrained Interactive Recommendation with Natural Language
Feedback [158.8095688415973]
制約強化強化学習(RL)フレームワークを提案する。
具体的には,ユーザの過去の嗜好に反するレコメンデーションを検出するために,識別器を利用する。
提案するフレームワークは汎用的であり,制約付きテキスト生成のタスクにさらに拡張されている。
論文 参考訳(メタデータ) (2020-05-04T16:23:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。