Slowing Down a Coherent Superposition of Circular Rydberg States of Strontium
- URL: http://arxiv.org/abs/2406.01396v1
- Date: Mon, 3 Jun 2024 14:59:23 GMT
- Title: Slowing Down a Coherent Superposition of Circular Rydberg States of Strontium
- Authors: L. Lachaud, B. Muraz, A. Couto, J. -M. Raimond, M. Brune, S. Gleyzes,
- Abstract summary: We demonstrate laser slowing of a thermal atomic beam of circular strontium atoms.
We also show that a superposition of circular states undergoes very weak decoherence during the cooling process.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rydberg alkaline earth atoms are promising tools for quantum simulation and metrology. When one of the two valence electrons is promoted to long-lived circular states, the second valence electron can be optically manipulated without significant autoionization. We harness this feature to demonstrate laser slowing of a thermal atomic beam of circular strontium atoms. By driving the main ion core 422 nm wavelength resonance, we observe a velocity reduction of 50 m/s without significant autoionization. We also show that a superposition of circular states undergoes very weak decoherence during the cooling process, up to the scattering of more than thousand photons. This robustness opens new perspectives for quantum simulations over long timescales with circular atoms, while simultaneously cooling their motional state. It makes it possible to mitigate the harmful effects of unavoidable heating due to spin-motion coupling during a quantum simulation.
Related papers
- Generation of many-body entanglement by collective coupling of atom pairs to cavity photons [0.0]
We identify a controllable and scalable catalyst that allows metrologically useful entangled states to be generated at a high rate.
The time scale of entanglement formation can be much shorter than for bare atom-atom interactions, effectively eliminating the decoherence due to photon losses.
Our protocol may find applications in future quantum sensors or other systems where controllable and scalable many-body entanglement is desired.
arXiv Detail & Related papers (2024-06-20T16:23:05Z) - Quadrupole coupling of circular Rydberg qubits to inner shell excitations [0.0]
Divalent atoms provide excellent means for advancing control in Rydberg atom-based quantum simulation and computing.
We report the implementation of electric quadrupole coupling between the metastable 4D$_3/2$ level and a very high-$n$ ($n=79$) circular Rydberg qubit.
Our results demonstrate access to weak electron-electron interactions in Rydberg atoms and expand the quantum simulation toolbox for optical control of highly excited circular state qubits.
arXiv Detail & Related papers (2024-05-30T20:54:35Z) - Long-Lived Circular Rydberg Qubits of Alkaline-Earth Atoms in Optical
Tweezers [0.0]
Coherence time and gate fidelities in Rydberg atom quantum simulators and computers are fundamentally limited by the Rydberg state lifetime.
Circular Rydberg states are highly promising candidates to overcome this limitation by orders of magnitude.
We report the first realization of alkaline-earth circular Rydberg atoms trapped in optical tweezers.
arXiv Detail & Related papers (2024-01-19T11:07:47Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Millisecond-lived circular Rydberg atoms in a room-temperature
experiment [0.0]
Circular Rydberg states are ideal tools for quantum technologies, with huge mutual interactions and extremely long lifetimes.
Blackbody-radiation-induced transfers annihilate this essential asset of circular states at room temperature.
We demonstrate here, on a laser-cooled atomic sample, a circular state lifetime of more than one millisecond at room temperature for a principal quantum number 60.
arXiv Detail & Related papers (2022-09-23T15:36:12Z) - Computational Insights into Electronic Excitations, Spin-Orbit Coupling
Effects, and Spin Decoherence in Cr(IV)-based Molecular Qubits [63.18666008322476]
We provide insights into key properties of Cr(IV)-based molecules aimed at assisting chemical design of efficient molecular qubits.
We find that the sign of the uniaxial zero-field splitting (ZFS) parameter is negative for all considered molecules.
We quantify (super)hyperfine coupling to the $53$Cr nuclear spin and to the $13C and $1H nuclear spins.
arXiv Detail & Related papers (2022-05-01T01:23:10Z) - Optical coherent manipulation of alkaline-earth circular Rydberg states [0.0]
We show how to use the electrostatic coupling between the two electrons of strontium to coherently manipulate a circular Rydberg state with optical pulses.
This experiment opens the way to a state-selective spatially-resolved non-destructive detection of the circular states.
arXiv Detail & Related papers (2021-11-29T12:52:09Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Motion-induced radiation due to an atom in the presence of a graphene
plane [62.997667081978825]
We study the motion-induced radiation due to the non-relativistic motion of an atom in the presence of a static graphene plate.
We show that the effect of the plate is to increase the probability of emission when the atom is near the plate and oscillates along a direction perpendicular to it.
arXiv Detail & Related papers (2021-04-15T14:15:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.