論文の概要: Adapting Prediction Sets to Distribution Shifts Without Labels
- arxiv url: http://arxiv.org/abs/2406.01416v2
- Date: Mon, 09 Jun 2025 19:58:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-11 15:11:38.46646
- Title: Adapting Prediction Sets to Distribution Shifts Without Labels
- Title(参考訳): ラベルなしで分布シフトに適応する予測セット
- Authors: Kevin Kasa, Zhiyu Zhang, Heng Yang, Graham W. Taylor,
- Abstract要約: 我々は、共形予測(CP)と呼ばれる標準設定値予測フレームワークに焦点を当てる。
本稿では, シフトテスト領域からのラベルなしデータのみを用いて, 実用性を向上させる方法について検討する。
提案手法は,既存のベースラインよりも一貫した改善を実現し,完全教師付き手法の性能にほぼ一致することを示す。
- 参考スコア(独自算出の注目度): 16.478151550456804
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently there has been a surge of interest to deploy confidence set predictions rather than point predictions in machine learning. Unfortunately, the effectiveness of such prediction sets is frequently impaired by distribution shifts in practice, and the challenge is often compounded by the lack of ground truth labels at test time. Focusing on a standard set-valued prediction framework called conformal prediction (CP), this paper studies how to improve its practical performance using only unlabeled data from the shifted test domain. This is achieved by two new methods called ECP and EACP, whose main idea is to adjust the score function in CP according to its base model's own uncertainty evaluation. Through extensive experiments on a number of large-scale datasets and neural network architectures, we show that our methods provide consistent improvement over existing baselines and nearly match the performance of fully supervised methods.
- Abstract(参考訳): 近年、機械学習のポイント予測よりも、信頼性セット予測をデプロイする関心が高まっている。
残念なことに、そのような予測セットの有効性は、実際には分布シフトによってしばしば損なわれ、その課題は、テスト時の基底真理ラベルの欠如によって複雑化される。
本稿では, 整合予測 (CP) と呼ばれる標準設定値予測フレームワークに着目し, シフトテスト領域からのラベルなしデータのみを用いて, 実用的性能を向上させる方法について検討する。
これは、ECPとEACPと呼ばれる2つの新しい手法によって達成される。
大規模データセットとニューラルネットワークアーキテクチャの広範な実験を通じて、我々の手法は既存のベースラインよりも一貫した改善を提供し、完全に教師された手法の性能にほぼ一致することを示した。
関連論文リスト
- Conformal Uncertainty Indicator for Continual Test-Time Adaptation [16.248749460383227]
連続テスト時間適応(CTTA)のための整形不確かさ指標(CUI)を提案する。
我々は、コンフォーマル予測(CP)を利用して、特定のカバレッジ確率を持つ真のラベルを含む予測セットを生成する。
実験により,CUIが不確かさを効果的に推定し,既存のCTTA法にまたがる適応性能を向上させることが確認された。
論文 参考訳(メタデータ) (2025-02-05T08:47:18Z) - Uncertainty-Calibrated Test-Time Model Adaptation without Forgetting [55.17761802332469]
テスト時間適応(TTA)は、与えられたモデルw.r.t.を任意のテストサンプルに適用することにより、トレーニングデータとテストデータの間の潜在的な分散シフトに取り組むことを目指している。
事前の手法は各テストサンプルに対してバックプロパゲーションを実行するため、多くのアプリケーションに対して許容できない最適化コストがかかる。
本稿では, 有効サンプル選択基準を策定し, 信頼性および非冗長なサンプルを同定する, 効率的なアンチフォッティングテスト時間適応法を提案する。
論文 参考訳(メタデータ) (2024-03-18T05:49:45Z) - Domain-adaptive and Subgroup-specific Cascaded Temperature Regression
for Out-of-distribution Calibration [16.930766717110053]
本稿では, メタセットをベースとした新しい温度回帰法を提案し, ポストホックキャリブレーション法を提案する。
予測されたカテゴリと信頼度に基づいて,各メタセットをサブグループに分割し,多様な不確実性を捉える。
回帰ネットワークは、カテゴリ特化および信頼レベル特化スケーリングを導出し、メタセット間のキャリブレーションを達成するように訓練される。
論文 参考訳(メタデータ) (2024-02-14T14:35:57Z) - Channel-Selective Normalization for Label-Shift Robust Test-Time Adaptation [16.657929958093824]
テスト時間適応は、推論中にモデルを新しいデータ分布に調整するアプローチである。
テスト時のバッチ正規化は、ドメインシフトベンチマークで魅力的なパフォーマンスを達成した、シンプルで一般的な方法である。
本稿では、ディープネットワークにおけるチャネルのみを選択的に適応させ、ラベルシフトに敏感な劇的な適応を最小化することで、この問題に対処することを提案する。
論文 参考訳(メタデータ) (2024-02-07T15:41:01Z) - Generalized Robust Test-Time Adaptation in Continuous Dynamic Scenarios [18.527640606971563]
テスト時間適応(TTA)は、未ラベルのテストデータストリームのみを使用する推論フェーズにおいて、事前訓練されたモデルに分散をテストする。
本稿では,問題に効果的に対応する汎用ロバストテスト時間適応(GRoTTA)法を提案する。
論文 参考訳(メタデータ) (2023-10-07T07:13:49Z) - Rethinking Precision of Pseudo Label: Test-Time Adaptation via
Complementary Learning [10.396596055773012]
本稿では,テスト時間適応性を高めるための新しい補完学習手法を提案する。
テスト時適応タスクでは、ソースドメインからの情報は通常利用できない。
我々は,相補ラベルのリスク関数がバニラ損失式と一致することを強調した。
論文 参考訳(メタデータ) (2023-01-15T03:36:33Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
テスト時間適応(TTA)は、テスト時にラベルのないデータにモデルを適応させることによって、この問題に対処することを目的としている。
本稿では,クラス認識特徴アライメント(CAFA, Class-Aware Feature Alignment)と呼ばれる単純な機能アライメント損失を提案する。
論文 参考訳(メタデータ) (2022-06-01T03:02:07Z) - Training on Test Data with Bayesian Adaptation for Covariate Shift [96.3250517412545]
ディープニューラルネットワークは、信頼できない不確実性推定で不正確な予測を行うことが多い。
分布シフトの下でのラベルなし入力とモデルパラメータとの明確に定義された関係を提供するベイズモデルを導出する。
本手法は精度と不確実性の両方を向上することを示す。
論文 参考訳(メタデータ) (2021-09-27T01:09:08Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
我々は予測時間バッチ正規化と呼び、共変量シフト時のモデル精度とキャリブレーションを大幅に改善する。
予測時間バッチ正規化は、既存の最先端アプローチに相補的な利点をもたらし、ロバスト性を向上させることを示します。
この手法は、事前トレーニングと併用して使用すると、さまざまな結果が得られるが、より自然なタイプのデータセットシフトでは、パフォーマンスが良くないようだ。
論文 参考訳(メタデータ) (2020-06-19T05:08:43Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
機械学習アルゴリズムは、データ中毒攻撃の影響を受けやすい。
任意の関数に対するランダム化スムージングの統一的なビューを示す。
本稿では,一般的なデータ中毒攻撃に対して,ポイントワイズで確実に堅牢な分類器を構築するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2020-02-07T21:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。