論文の概要: Stochastic Newton Proximal Extragradient Method
- arxiv url: http://arxiv.org/abs/2406.01478v2
- Date: Mon, 11 Nov 2024 16:37:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:05:01.585158
- Title: Stochastic Newton Proximal Extragradient Method
- Title(参考訳): 確率的ニュートン近位勾配法
- Authors: Ruichen Jiang, Michał Dereziński, Aryan Mokhtari,
- Abstract要約: そこで本稿では,これらの境界を改良するNewton Extragradient法を提案する。
我々はHybrid Proximal Extragradient(HPE)フレームワークを拡張してこれを実現する。
- 参考スコア(独自算出の注目度): 18.47705532817026
- License:
- Abstract: Stochastic second-order methods achieve fast local convergence in strongly convex optimization by using noisy Hessian estimates to precondition the gradient. However, these methods typically reach superlinear convergence only when the stochastic Hessian noise diminishes, increasing per-iteration costs over time. Recent work in [arXiv:2204.09266] addressed this with a Hessian averaging scheme that achieves superlinear convergence without higher per-iteration costs. Nonetheless, the method has slow global convergence, requiring up to $\tilde{O}(\kappa^2)$ iterations to reach the superlinear rate of $\tilde{O}((1/t)^{t/2})$, where $\kappa$ is the problem's condition number. In this paper, we propose a novel stochastic Newton proximal extragradient method that improves these bounds, achieving a faster global linear rate and reaching the same fast superlinear rate in $\tilde{O}(\kappa)$ iterations. We accomplish this by extending the Hybrid Proximal Extragradient (HPE) framework, achieving fast global and local convergence rates for strongly convex functions with access to a noisy Hessian oracle.
- Abstract(参考訳): 確率的二階法は、雑音の多いヘッセン推定を用いて強凸最適化において高速な局所収束を達成する。
しかし、これらの手法は通常、確率的ヘッセン雑音が減少するときにのみ超線形収束し、時間の経過とともに1点当たりのコストが増大する。
最近の[arXiv:2204.09266]の研究は、高精細化コストを伴わずに超線型収束を実現するヘッセン平均化スキームでこの問題に対処している。
それにもかかわらず、この手法はグローバル収束が遅いため、$\tilde{O}(\kappa^2)$イテレーションを$\tilde{O}((1/t)^{t/2})$に到達させる必要がある。
本稿では,これらの境界を改良し,より高速な大域線形速度を実現し,$\tilde{O}(\kappa)$繰り返しで同じ高速な超線形速度に達するような,確率的ニュートン近位勾配法を提案する。
我々は,Hybrid Proximal Extragradient (HPE) フレームワークを拡張して,強凸関数に対する高速な大域的および局所的な収束率と,ノイズの多いヘッセンオラクルへのアクセスを実現する。
関連論文リスト
- Methods for Convex $(L_0,L_1)$-Smooth Optimization: Clipping, Acceleration, and Adaptivity [50.25258834153574]
我々は、(強に)凸 $(L0)$-smooth 関数のクラスに焦点を当て、いくつかの既存のメソッドに対する新しい収束保証を導出する。
特に,スムーズなグラディエント・クリッピングを有するグラディエント・ディフレッシュと,ポリアク・ステップサイズを有するグラディエント・ディフレッシュのコンバージェンス・レートの改善を導出した。
論文 参考訳(メタデータ) (2024-09-23T13:11:37Z) - Fast Unconstrained Optimization via Hessian Averaging and Adaptive Gradient Sampling Methods [0.3222802562733786]
ヘシアン・アブラッシングに基づくサブサンプルニュートン法による有限サム予測対象関数の最小化について検討する。
これらの方法は不有効であり、ヘッセン近似の固定コストがかかる。
本稿では,新しい解析手法を提案し,その実用化に向けた課題を提案する。
論文 参考訳(メタデータ) (2024-08-14T03:27:48Z) - Incremental Quasi-Newton Methods with Faster Superlinear Convergence
Rates [50.36933471975506]
各成分関数が強く凸であり、リプシッツ連続勾配とヘシアンを持つ有限和最適化問題を考える。
最近提案されたインクリメンタル準ニュートン法は、BFGSの更新に基づいて、局所的な超線形収束率を達成する。
本稿では、対称ランク1更新をインクリメンタルフレームワークに組み込むことにより、より効率的な準ニュートン法を提案する。
論文 参考訳(メタデータ) (2024-02-04T05:54:51Z) - Accelerated Quasi-Newton Proximal Extragradient: Faster Rate for Smooth
Convex Optimization [26.328847475942894]
我々は,本手法が$Obigl(minfrac1k2, fracsqrtdlog kk2.5bigr)$の収束率を達成できることを証明した。
我々の知る限りでは、この結果はネステロフの加速勾配に対する準ニュートン型法の証明可能な利得を示す最初のものである。
論文 参考訳(メタデータ) (2023-06-03T23:31:27Z) - A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization [53.044526424637866]
本稿では、2つの異なる対象の一般円錐最適化を最小化する近似二階定常点(SOSP)について検討する。
特に、近似SOSPを見つけるためのNewton-CGベースの拡張共役法を提案する。
論文 参考訳(メタデータ) (2023-01-10T20:43:29Z) - Second-order optimization with lazy Hessians [55.51077907483634]
一般の非線形最適化問題を解くためにニュートンの遅延ヘッセン更新を解析する。
我々は、メソッドの各ステップで新しい勾配を計算しながら、これまで見られたヘッセン反復を再利用する。
論文 参考訳(メタデータ) (2022-12-01T18:58:26Z) - Optimal Extragradient-Based Bilinearly-Coupled Saddle-Point Optimization [116.89941263390769]
滑らかな凸凹凸結合型サドル点問題, $min_mathbfxmax_mathbfyF(mathbfx) + H(mathbfx,mathbfy)$ を考える。
漸進的勾配指数(AG-EG)降下指数アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2022-06-17T06:10:20Z) - Hessian Averaging in Stochastic Newton Methods Achieves Superlinear
Convergence [69.65563161962245]
ニュートン法を用いて,滑らかで強凸な目的関数を考える。
最適段階において局所収束に遷移する普遍重み付き平均化スキームが存在することを示す。
論文 参考訳(メタデータ) (2022-04-20T07:14:21Z) - Nesterov Accelerated Shuffling Gradient Method for Convex Optimization [15.908060383231371]
このアルゴリズムは,統一シャッフル方式を用いて,$mathcalO (1/T)$の改善率を示す。
我々の収束解析は有界領域や有界勾配条件に関する仮定を必要としない。
数値シミュレーションはアルゴリズムの効率を実証する。
論文 参考訳(メタデータ) (2022-02-07T21:23:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。