論文の概要: LightCPPgen: An Explainable Machine Learning Pipeline for Rational Design of Cell Penetrating Peptides
- arxiv url: http://arxiv.org/abs/2406.01617v1
- Date: Fri, 31 May 2024 10:57:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 21:31:36.192541
- Title: LightCPPgen: An Explainable Machine Learning Pipeline for Rational Design of Cell Penetrating Peptides
- Title(参考訳): LightCPPgen: 細胞貫通ペプチドの合理的設計のための説明可能な機械学習パイプライン
- Authors: Gabriele Maroni, Filip Stojceski, Lorenzo Pallante, Marco A. Deriu, Dario Piga, Gianvito Grasso,
- Abstract要約: 我々は,機械学習(ML)と最適化アルゴリズムの長所を活かして,CPPのデノボ設計に革新的なアプローチを導入する。
私たちの戦略はLight CPPgenと呼ばれ、LightGBMベースの予測モデルと遺伝的アルゴリズム(GA)を統合しています。
GAソリューションは、元の非貫通ペプチドとの類似性を最大化しつつ、候補配列の透過性スコアを特にターゲットとしている。
- 参考スコア(独自算出の注目度): 0.32985979395737786
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cell-penetrating peptides (CPPs) are powerful vectors for the intracellular delivery of a diverse array of therapeutic molecules. Despite their potential, the rational design of CPPs remains a challenging task that often requires extensive experimental efforts and iterations. In this study, we introduce an innovative approach for the de novo design of CPPs, leveraging the strengths of machine learning (ML) and optimization algorithms. Our strategy, named LightCPPgen, integrates a LightGBM-based predictive model with a genetic algorithm (GA), enabling the systematic generation and optimization of CPP sequences. At the core of our methodology is the development of an accurate, efficient, and interpretable predictive model, which utilizes 20 explainable features to shed light on the critical factors influencing CPP translocation capacity. The CPP predictive model works synergistically with an optimization algorithm, which is tuned to enhance computational efficiency while maintaining optimization performance. The GA solutions specifically target the candidate sequences' penetrability score, while trying to maximize similarity with the original non-penetrating peptide in order to retain its original biological and physicochemical properties. By prioritizing the synthesis of only the most promising CPP candidates, LightCPPgen can drastically reduce the time and cost associated with wet lab experiments. In summary, our research makes a substantial contribution to the field of CPP design, offering a robust framework that combines ML and optimization techniques to facilitate the rational design of penetrating peptides, by enhancing the explainability and interpretability of the design process.
- Abstract(参考訳): 細胞貫通ペプチド(CPP)は、様々な治療分子の細胞内輸送に強力なベクターである。
彼らの可能性にもかかわらず、CPPの合理的な設計は、しばしば広範な実験的努力と反復を必要とする難しい課題である。
本研究では,機械学習(ML)と最適化アルゴリズムの長所を活かした,CPPのデノボ設計のための革新的なアプローチを提案する。
我々の戦略はLightCPPgenと呼ばれ、LightGBMベースの予測モデルと遺伝的アルゴリズム(GA)を統合し、CPPシーケンスの体系的生成と最適化を可能にする。
提案手法の核心となるのは,20個の説明可能な特徴を用いてCPP転位能力に影響を及ぼす重要な要因を明らかにする,正確で効率的かつ解釈可能な予測モデルの開発である。
CPP予測モデルは最適化アルゴリズムと相乗的に働き、最適化性能を維持しながら計算効率を向上させるように調整される。
GAソリューションは、候補配列の透過性スコアを特にターゲットとし、元の生物学的および物理化学的特性を維持するために、元の非貫通性ペプチドとの類似性を最大化しようと試みている。
最も有望なCPP候補の合成だけを優先順位付けすることで、LightCPPgenは湿式実験にかかわる時間とコストを大幅に削減できる。
まとめると,本研究はCPP設計の分野に大きく貢献し,MLと最適化技術を組み合わせて,設計プロセスの説明可能性や解釈可能性を高めることにより,透過性ペプチドの合理的な設計を容易にする堅牢なフレームワークを提供する。
関連論文リスト
- Constrained composite Bayesian optimization for rational synthesis of polymeric particles [0.7499722271664147]
本研究では,制約付きおよび複合ベイズ最適化(CCBO)を統合し,ブラックボックス実現可能性制約の下で効率的な目標値最適化を行う。
CCBOは戦略的に不可能な条件を回避し、あらかじめ定義された大きさの目標に向けて効率的に粒子生産を最適化した。
実験では、ポリ(乳酸-コ-グリコール酸)粒子の300nmおよび3.0$mu$mの合理的合成を電気散布により導くためのCCBO機能を検証した。
論文 参考訳(メタデータ) (2024-11-06T14:40:03Z) - Batched Bayesian optimization with correlated candidate uncertainties [44.38372821900645]
純粋に活用する qPO (multipoint of Optimality) による離散最適化のための獲得戦略を提案する。
本研究では, 大規模化学ライブラリのモデル誘導探索に適用し, バッチ化ベイズ最適化における最先端手法と同等以上の性能を示すことを示す。
論文 参考訳(メタデータ) (2024-10-08T20:13:12Z) - Enhanced Bayesian Optimization via Preferential Modeling of Abstract
Properties [49.351577714596544]
本研究では,非測定抽象特性に関する専門家の嗜好を代理モデルに組み込むための,人間とAIの協調型ベイズフレームワークを提案する。
優先判断において、誤った/誤解を招く専門家バイアスを処理できる効率的な戦略を提供する。
論文 参考訳(メタデータ) (2024-02-27T09:23:13Z) - Poisson Process for Bayesian Optimization [126.51200593377739]
本稿では、Poissonプロセスに基づくランキングベースの代理モデルを提案し、Poisson Process Bayesian Optimization(PoPBO)と呼ばれる効率的なBOフレームワークを提案する。
従来のGP-BO法と比較すると,PoPBOはコストが低く,騒音に対する堅牢性も良好であり,十分な実験により検証できる。
論文 参考訳(メタデータ) (2024-02-05T02:54:50Z) - Optimization of chemical mixers design via tensor trains and quantum
computing [0.0]
流体のY字型ミキサーに着目した部品形状最適化のための新しい最適化手法である列車最適化(TetraOpt)を実証する。
高い並列化とより広範なグローバル検索のため、TetraOptは精度と実行時のベイズ最適化技術に優れる。
このアプローチの量子コンピューティングへの拡張について論じるが、これはより効率的なアプローチをもたらす可能性がある。
論文 参考訳(メタデータ) (2023-04-24T17:56:56Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - ODBO: Bayesian Optimization with Search Space Prescreening for Directed Protein Evolution [18.726398852721204]
タンパク質指向進化のための効率的で実験的な設計指向のクローズドループ最適化フレームワークを提案する。
ODBOは、新しい低次元タンパク質エンコーディング戦略と、外乱検出による検索空間事前スクリーニングによって強化されたベイズ最適化を組み合わせている。
本研究は, タンパク質指向進化実験を4回実施し, 興味のある変異を見出すためのフレームワークの能力を実証した。
論文 参考訳(メタデータ) (2022-05-19T13:21:31Z) - Accelerating Bayesian Optimization for Biological Sequence Design with
Denoising Autoencoders [28.550684606186884]
我々は,識別可能なマルチタスクガウスプロセスヘッドを用いて,デノナイズドオートエンコーダを共同で訓練する手法を開発した。
我々はZINCデータセットに基づく小分子上でLaMBOを評価し,蛍光タンパク質をターゲットとした新しい大規模分子タスクを導入する。
論文 参考訳(メタデータ) (2022-03-23T21:58:45Z) - Sequential Information Design: Markov Persuasion Process and Its
Efficient Reinforcement Learning [156.5667417159582]
本稿では,逐次情報設計の新たなモデル,すなわちマルコフ説得過程(MPP)を提案する。
MPPのプランニングは、ミオピックレシーバーに同時に説得されるシグナルポリシーを見つけ、送信者の最適な長期累積ユーティリティを誘導する、というユニークな課題に直面している。
我々は,楽観主義と悲観主義の両原理の新たな組み合わせを特徴とする,実証可能な効率のよい非回帰学習アルゴリズム,Optimism-Pessimism Principle for Persuasion Process (OP4) を設計する。
論文 参考訳(メタデータ) (2022-02-22T05:41:43Z) - EBM-Fold: Fully-Differentiable Protein Folding Powered by Energy-based
Models [53.17320541056843]
本研究では,データ駆動型生成ネットワークを用いたタンパク質構造最適化手法を提案する。
EBM-Foldアプローチは,従来のロゼッタ構造最適化ルーチンと比較して,高品質なデコイを効率よく生成できる。
論文 参考訳(メタデータ) (2021-05-11T03:40:29Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。