論文の概要: Advancing CMA-ES with Learning-Based Cooperative Coevolution for Scalable Optimization
- arxiv url: http://arxiv.org/abs/2504.17578v1
- Date: Thu, 24 Apr 2025 14:09:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.400404
- Title: Advancing CMA-ES with Learning-Based Cooperative Coevolution for Scalable Optimization
- Title(参考訳): スケーラブル最適化のための学習に基づく協調的共進化によるCMA-ESの改善
- Authors: Hongshu Guo, Wenjie Qiu, Zeyuan Ma, Xinglin Zhang, Jun Zhang, Yue-Jiao Gong,
- Abstract要約: 本稿では,先駆的な学習に基づく協調的共進化フレームワークであるLCCを紹介する。
LCCは最適化プロセス中に動的に分解戦略をスケジュールする。
最適化の効率性とリソース消費の観点からは、最先端のベースラインに対して、ある種のアドバンテージを提供する。
- 参考スコア(独自算出の注目度): 12.899626317088885
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent research in Cooperative Coevolution~(CC) have achieved promising progress in solving large-scale global optimization problems. However, existing CC paradigms have a primary limitation in that they require deep expertise for selecting or designing effective variable decomposition strategies. Inspired by advancements in Meta-Black-Box Optimization, this paper introduces LCC, a pioneering learning-based cooperative coevolution framework that dynamically schedules decomposition strategies during optimization processes. The decomposition strategy selector is parameterized through a neural network, which processes a meticulously crafted set of optimization status features to determine the optimal strategy for each optimization step. The network is trained via the Proximal Policy Optimization method in a reinforcement learning manner across a collection of representative problems, aiming to maximize the expected optimization performance. Extensive experimental results demonstrate that LCC not only offers certain advantages over state-of-the-art baselines in terms of optimization effectiveness and resource consumption, but it also exhibits promising transferability towards unseen problems.
- Abstract(参考訳): 協調的共進化(CC)の最近の研究は、大規模なグローバル最適化問題の解決において有望な進歩を遂げている。
しかし、既存のCCパラダイムは、有効な変数分解戦略の選択や設計に深い専門知識を必要とするため、主要な制限がある。
メタブラックボックス最適化の進歩に触発された本研究では,最適化プロセス中の分解戦略を動的にスケジュールする,学習ベースの協調的共進化フレームワークであるLCCを紹介する。
分解戦略セレクタはニューラルネットワークを介してパラメータ化され、微妙に構築された最適化ステータス機能群を処理し、最適化ステップ毎に最適な戦略を決定する。
ネットワークは、予測された最適化性能を最大化することを目的として、代表的問題の集合をまたいだ強化学習手法を用いて訓練される。
大規模実験の結果、LCCは最適化効率と資源消費の観点から、最先端のベースラインに対して一定の利点があるだけでなく、見つからない問題に対する有望な転送可能性も示している。
関連論文リスト
- Scalable Min-Max Optimization via Primal-Dual Exact Pareto Optimization [66.51747366239299]
拡張ラグランジアンに基づくmin-max問題のスムーズな変種を提案する。
提案アルゴリズムは, 段階的戦略よりも目的数で拡張性が高い。
論文 参考訳(メタデータ) (2025-03-16T11:05:51Z) - Reinforcement learning Based Automated Design of Differential Evolution Algorithm for Black-box Optimization [14.116216795259554]
微分進化(DE)アルゴリズムは最も効果的な進化アルゴリズムの1つとして認識されている。
ブラックボックス最適化のためのDEの自動設計に強化学習(RL)を用いる新しいフレームワークを提案する。
RLは高度なメタ最適化器として機能し、カスタマイズされたDE構成を生成する。
論文 参考訳(メタデータ) (2025-01-22T13:41:47Z) - Explicit and Implicit Graduated Optimization in Deep Neural Networks [0.6906005491572401]
本稿では,最適雑音スケジューリングを用いた明示的な累積最適化アルゴリズムの性能を実験的に評価する。
さらに、ResNetアーキテクチャを用いた画像分類タスクの実験を通じて、その効果を実証する。
論文 参考訳(メタデータ) (2024-12-16T07:23:22Z) - Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Thenフレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
本稿では,共同予測モデルを用いて観測可能特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-07T19:52:14Z) - Primitive Agentic First-Order Optimization [0.0]
本研究では,一階強化学習として,原始状態表現とエージェント環境相互作用を組み合わせた概念実証研究を提案する。
その結果,RLに基づく最適化では,基本的RL法と簡潔な部分的状態表現を組み合わせることで,複雑性の管理を最適化できることがわかった。
論文 参考訳(メタデータ) (2024-06-07T11:13:38Z) - An Invariant Information Geometric Method for High-Dimensional Online
Optimization [9.538618632613714]
本稿では,対応するフレームワークから派生した,完全な不変性指向進化戦略アルゴリズムを提案する。
ベイズ最適化と進化戦略における主要なアルゴリズムに対してSynCMAをベンチマークする。
あらゆるシナリオにおいて、SynCMAはサンプル効率において他のアルゴリズムよりも優れた能力を示す。
論文 参考訳(メタデータ) (2024-01-03T07:06:26Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Advancements in Optimization: Adaptive Differential Evolution with
Diversification Strategy [0.0]
この研究は2次元空間において単目的最適化を採用し、複数の反復で各ベンチマーク関数上でADEDSを実行する。
ADEDSは、多くの局所最適化、プレート型、谷型、伸縮型、ノイズの多い機能を含む様々な最適化課題において、標準Dより一貫して優れている。
論文 参考訳(メタデータ) (2023-10-02T10:05:41Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Accelerated Federated Learning with Decoupled Adaptive Optimization [53.230515878096426]
フェデレートドラーニング(FL)フレームワークは、クライアント上のトレーニングデータのプライバシを維持しながら、共有モデルを協調的に学習することを可能にする。
近年,SGDM,Adam,AdaGradなどの集中型適応最適化手法をフェデレートした設定に一般化するためのイテレーションが多数実施されている。
本研究は、常微分方程式(ODE)のダイナミクスの観点から、FLの新しい適応最適化手法を開発することを目的としている。
論文 参考訳(メタデータ) (2022-07-14T22:46:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。