Equivariant amortized inference of poses for cryo-EM
- URL: http://arxiv.org/abs/2406.01630v1
- Date: Sat, 1 Jun 2024 11:36:29 GMT
- Title: Equivariant amortized inference of poses for cryo-EM
- Authors: Larissa de Ruijter, Gabriele Cesa,
- Abstract summary: cryo-EM is a vital technique for determining 3D structure of biological molecules such as proteins and viruses.
The cryo-EM reconstruction problem is challenging due to the high noise levels, the missing poses of particles, and the computational demands of processing large datasets.
A promising solution to these challenges lies in the use of amortized inference methods, which have shown particular efficacy in pose estimation for large datasets.
- Score: 5.141137421503899
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cryo-EM is a vital technique for determining 3D structure of biological molecules such as proteins and viruses. The cryo-EM reconstruction problem is challenging due to the high noise levels, the missing poses of particles, and the computational demands of processing large datasets. A promising solution to these challenges lies in the use of amortized inference methods, which have shown particular efficacy in pose estimation for large datasets. However, these methods also encounter convergence issues, often necessitating sophisticated initialization strategies or engineered solutions for effective convergence. Building upon the existing cryoAI pipeline, which employs a symmetric loss function to address convergence problems, this work explores the emergence and persistence of these issues within the pipeline. Additionally, we explore the impact of equivariant amortized inference on enhancing convergence. Our investigations reveal that, when applied to simulated data, a pipeline incorporating an equivariant encoder not only converges faster and more frequently than the standard approach but also demonstrates superior performance in terms of pose estimation accuracy and the resolution of the reconstructed volume. Notably, $D_4$-equivariant encoders make the symmetric loss superfluous and, therefore, allow for a more efficient reconstruction pipeline.
Related papers
- Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
Anomaly and missing data constitute a thorny problem in industrial applications.
Deep learning enabled anomaly detection has emerged as a critical direction.
The data collected in edge devices contain user privacy.
arXiv Detail & Related papers (2024-11-06T15:38:31Z) - 3D Equivariant Pose Regression via Direct Wigner-D Harmonics Prediction [50.07071392673984]
Existing methods learn 3D rotations parametrized in the spatial domain using angles or quaternions.
We propose a frequency-domain approach that directly predicts Wigner-D coefficients for 3D rotation regression.
Our method achieves state-of-the-art results on benchmarks such as ModelNet10-SO(3) and PASCAL3D+.
arXiv Detail & Related papers (2024-11-01T12:50:38Z) - Convex Latent-Optimized Adversarial Regularizers for Imaging Inverse
Problems [8.33626757808923]
We introduce Convex Latent-d Adrial Regularizers (CLEAR), a novel and interpretable data-driven paradigm.
CLEAR represents a fusion of deep learning (DL) and variational regularization.
Our method consistently outperforms conventional data-driven techniques and traditional regularization approaches.
arXiv Detail & Related papers (2023-09-17T12:06:04Z) - Improved Cryo-EM Pose Estimation and 3D Classification through Latent-Space Disentanglement [14.973360669658561]
We propose a self-supervised variational autoencoder architecture called "HetACUMN" based on amortized inference.
Results on simulated datasets show that HetACUMN generated more accurate conformational classifications than other amortized or non-amortized methods.
arXiv Detail & Related papers (2023-08-09T13:41:30Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Score-based Diffusion Models in Function Space [140.792362459734]
Diffusion models have recently emerged as a powerful framework for generative modeling.
We introduce a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Deep Preconditioners and their application to seismic wavefield
processing [0.0]
Sparsity-promoting inversion, coupled with fixed-basis sparsifying transforms, represent the go-to approach for many processing tasks.
We propose to train an AutoEncoder network to learn a direct mapping between the input seismic data and a representative latent manifold.
The trained decoder is subsequently used as a nonlinear preconditioner for the physics-driven inverse problem at hand.
arXiv Detail & Related papers (2022-07-20T14:25:32Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
A dataset of inter-dependent signals is defined as a matrix whose columns demonstrate strong dependencies.
A neural network is employed to act as structure prior and reveal the underlying signal interdependencies.
Deep unrolling and Deep equilibrium based algorithms are developed, forming highly interpretable and concise deep-learning-based architectures.
arXiv Detail & Related papers (2022-03-29T21:00:39Z) - Deep Learning for Simultaneous Inference of Hydraulic and Transport
Properties [0.0]
We use a convolutional adversarial autoencoder (CAAE) for the parameterization of the heterogeneous non-Gaussian conductivity field.
We also train a three-dimensional dense convolutional encoder-decoder (DenseED) network to serve as the forward surrogate for the flow and transport processes.
arXiv Detail & Related papers (2021-10-24T07:02:20Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
We propose a simple and efficient unsupervised feature selection method, by combining reconstruction error with $l_2,p$-norm regularization.
We present an efficient optimization algorithm to solve the proposed unsupervised model, and analyse the convergence and computational complexity of the algorithm theoretically.
arXiv Detail & Related papers (2020-12-29T04:08:38Z) - Learned convex regularizers for inverse problems [3.294199808987679]
We propose to learn a data-adaptive input- neural network (ICNN) as a regularizer for inverse problems.
We prove the existence of a sub-gradient-based algorithm that leads to a monotonically decreasing error in the parameter space with iterations.
We show that the proposed convex regularizer is at least competitive with and sometimes superior to state-of-the-art data-driven techniques for inverse problems.
arXiv Detail & Related papers (2020-08-06T18:58:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.