論文の概要: An Analysis under a Unified Fomulation of Learning Algorithms with Output Constraints
- arxiv url: http://arxiv.org/abs/2406.01647v1
- Date: Mon, 3 Jun 2024 12:58:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 21:21:41.838255
- Title: An Analysis under a Unified Fomulation of Learning Algorithms with Output Constraints
- Title(参考訳): 出力制約付き学習アルゴリズムの統一定式化による解析
- Authors: Mooho Song, Jay-Yoon Lee,
- Abstract要約: ニューラルネットワーク(NN)は様々なタスクでよく機能するが、時には人間に非意味な結果をもたらす。
トレーニング中に出力制約を減らして人間の知識を注入することで、モデルの性能を改善し、制約違反を減らすことができる。
メインタスクの情報と制約注入を統合化するための新しいアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 5.10832476049103
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks (NN) perform well in diverse tasks, but sometimes produce nonsensical results to humans. Most NN models "solely" learn from (input, output) pairs, occasionally conflicting with human knowledge. Many studies indicate injecting human knowledge by reducing output constraints during training can improve model performance and reduce constraint violations. While there have been several attempts to compare different existing algorithms under the same programming framework, nonetheless, there has been no previous work that categorizes learning algorithms with output constraints in a unified manner. Our contributions are as follows: (1) We categorize the previous studies based on three axes: type of constraint loss used (e.g. probabilistic soft logic, REINFORCE), exploration strategy of constraint-violating examples, and integration mechanism of learning signals from main task and constraint. (2) We propose new algorithms to integrate the information of main task and constraint injection, inspired by continual-learning algorithms. (3) Furthermore, we propose the $H\beta$-score as a metric for considering the main task metric and constraint violation simultaneously. To provide a thorough analysis, we examine all the algorithms on three NLP tasks: natural language inference (NLI), synthetic transduction examples (STE), and semantic role labeling (SRL). We explore and reveal the key factors of various algorithms associated with achieving high $H\beta$-scores.
- Abstract(参考訳): ニューラルネットワーク(NN)は様々なタスクでよく機能するが、時には人間に非意味な結果をもたらす。
ほとんどのNNモデルは(インプット、アウトプット)ペアから学び、時に人間の知識と矛盾する。
多くの研究は、トレーニング中に出力制約を減らして人間の知識を注入することは、モデル性能を改善し、制約違反を減らすことを示唆している。
同じプログラミングフレームワークの下で、異なる既存のアルゴリズムを比較する試みはいくつかあるが、しかしながら、学習アルゴリズムを統一的な方法で出力制約に分類する以前の研究は行われていない。
筆者らの貢献は,(1) 使用する制約損失の種類(確率的ソフトロジック,REINFORCE), 制約違反事例の探索戦略, および主課題と制約からの学習信号の統合メカニズムの3つの軸に基づいて, これまでの研究を分類することである。
2) 連続学習アルゴリズムにインスパイアされた主課題情報と制約注入情報を統合する新しいアルゴリズムを提案する。
さらに,本手法と制約違反を同時に考慮するための指標として,$H\beta$-scoreを提案する。
自然言語推論(NLI)、合成翻訳例(STE)、意味的役割ラベリング(SRL)という3つのNLPタスクにおける全てのアルゴリズムを網羅的に分析する。
我々は、高い$H\beta$-scoresを達成するための様々なアルゴリズムの鍵となる要素を探求し、明らかにする。
関連論文リスト
- From Decoding to Meta-Generation: Inference-time Algorithms for Large Language Models [63.188607839223046]
この調査は、推論中に計算をスケールするメリットに焦点を当てている。
我々はトークンレベルの生成アルゴリズム、メタジェネレーションアルゴリズム、効率的な生成という3つの領域を統一的な数学的定式化の下で探索する。
論文 参考訳(メタデータ) (2024-06-24T17:45:59Z) - Neural Algorithmic Reasoning Without Intermediate Supervision [21.852775399735005]
我々は、中間的監督に訴えることなく、入出力ペアからのみニューラルネットワーク推論を学ぶことに集中する。
我々は、アルゴリズムの軌跡にアクセスできることなく、モデルの中間計算を正規化できる自己教師対象を構築する。
CLRSic Algorithmic Reasoning Benchmarkのタスクにおいて,提案手法はトラジェクトリを教師する手法と競合することを示す。
論文 参考訳(メタデータ) (2023-06-23T09:57:44Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
既存の強化学習アルゴリズムは、計算的難易度、強い統計的仮定、最適なサンプルの複雑さに悩まされている。
所望の精度レベルに対して、レート最適サンプル複雑性を実現するための、最初の計算効率の良いアルゴリズムを提供する。
我々のアルゴリズムMusIKは、多段階の逆運動学に基づく表現学習と体系的な探索を組み合わせる。
論文 参考訳(メタデータ) (2023-04-12T14:51:47Z) - Exploring Viable Algorithmic Options for Learning from Demonstration
(LfD): A Parameterized Complexity Approach [0.0]
本稿では,パラメータ化複雑性解析を用いて,アルゴリズムの選択肢を体系的に探索する方法を示す。
環境、実演、ポリシーに対する多くの(しばしば同時に)制限に対して、我々の問題は、一般的にも、あるいは相対的に、効率的に解決できないことを示す。
論文 参考訳(メタデータ) (2022-05-10T15:54:06Z) - Simple Stochastic and Online Gradient DescentAlgorithms for Pairwise
Learning [65.54757265434465]
ペアワイズ学習(Pairwise learning)とは、損失関数がペアインスタンスに依存するタスクをいう。
オンライン降下(OGD)は、ペアワイズ学習でストリーミングデータを処理する一般的なアプローチである。
本稿では,ペアワイズ学習のための手法について,シンプルでオンラインな下降を提案する。
論文 参考訳(メタデータ) (2021-11-23T18:10:48Z) - Adaptive Discretization in Online Reinforcement Learning [9.560980936110234]
離散化に基づくアルゴリズムを設計する際の2つの大きな疑問は、離散化をどのように生成し、いつそれを洗練するかである。
オンライン強化学習のための木に基づく階層分割手法の統一的理論的解析を行う。
我々のアルゴリズムは操作制約に容易に適応し、我々の理論は3つの面のそれぞれに明示的な境界を与える。
論文 参考訳(メタデータ) (2021-10-29T15:06:15Z) - Identifying Co-Adaptation of Algorithmic and Implementational
Innovations in Deep Reinforcement Learning: A Taxonomy and Case Study of
Inference-based Algorithms [15.338931971492288]
我々は、アルゴリズムの革新と実装決定を分離するために、一連の推論に基づくアクター批判アルゴリズムに焦点を当てる。
実装の詳細がアルゴリズムの選択に一致すると、パフォーマンスが大幅に低下します。
結果は、どの実装の詳細がアルゴリズムと共適応され、共進化しているかを示す。
論文 参考訳(メタデータ) (2021-03-31T17:55:20Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
メタラーニング強化学習アルゴリズムの手法を提案する。
学習アルゴリズムはドメインに依存しないため、トレーニング中に見えない新しい環境に一般化することができる。
従来の制御タスク、gridworld型タスク、atariゲームよりも優れた一般化性能を得る2つの学習アルゴリズムに注目した。
論文 参考訳(メタデータ) (2021-01-08T18:55:07Z) - BUSTLE: Bottom-Up Program Synthesis Through Learning-Guided Exploration [72.88493072196094]
プログラムのボトムアップ検索に学習を活用する新しい合成手法を提案する。
特に、入力出力例のセットに基づいて、探索条件中の中間値の合成を優先順位付けするようにモデルを訓練する。
単純な教師付き学習アプローチであっても,学習とボトムアップ検索の組み合わせは極めて効果的であることを示す。
論文 参考訳(メタデータ) (2020-07-28T17:46:18Z) - Strong Generalization and Efficiency in Neural Programs [69.18742158883869]
本稿では,ニューラルプログラム誘導の枠組みを強く一般化する効率的なアルゴリズムを学習する問題について検討する。
ニューラルネットワークの入力/出力インターフェースを慎重に設計し、模倣することで、任意の入力サイズに対して正しい結果を生成するモデルを学ぶことができる。
論文 参考訳(メタデータ) (2020-07-07T17:03:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。