論文の概要: Self-Improving Robust Preference Optimization
- arxiv url: http://arxiv.org/abs/2406.01660v4
- Date: Fri, 11 Apr 2025 23:24:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-25 14:09:09.922172
- Title: Self-Improving Robust Preference Optimization
- Title(参考訳): 自己改善ロバスト推論最適化
- Authors: Eugene Choi, Arash Ahmadian, Matthieu Geist, Oilvier Pietquin, Mohammad Gheshlaghi Azar,
- Abstract要約: オンラインおよびオフラインのRLHFメソッドは、AIと人間の好みを合わせることに成功している。
本稿では,実用的で数学的に規定されたオフラインRLHFフレームワークである自己改善ロバスト推論最適化(SRPO)を提案する。
SRPO は,大規模な標準教師あり学習技術を用いて効率よく最適化できることを示す。
- 参考スコア(独自算出の注目度): 22.493029742076605
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Online and offline RLHF methods, such as PPO and DPO, have been highly successful in aligning AI with human preferences. Despite their success, however, these methods suffer from fundamental limitations: (a) Models trained with RLHF can learn from mistakes or negative examples through RL mechanism or contrastive loss during training. However, at inference time, they lack an innate self-improvement mechanism for error corrections. (b) The optimal solution of existing methods is highly task-dependent, making it difficult for them to generalize to new tasks. To address these challenges, we propose Self-Improving Robust Preference Optimization (SRPO), a practical and mathematically principled offline RLHF framework. The key idea behind SRPO is to cast the problem of learning from human preferences as a self-improvement process, mathematically formulated as a min-max objective that jointly optimizes a self-improvement policy and a generative policy in an adversarial fashion. Crucially, the solution for this optimization problem is independent of the training task, which makes it robust to its changes. We then show that this objective can be reformulated as a non-adversarial offline loss, which can be efficiently optimized using standard supervised learning techniques at scale. To demonstrate SRPO's effectiveness, we evaluate it using AI Win-Rate (WR) against human (GOLD) completions. When tested on the XSum dataset, SRPO outperforms DPO by a margin of 15% after 5 self revisions, achieving an impressive 90% WR. Moreover, on the challenging Arena-Hard prompts, SRPO outperforms both DPO and IPO (by 4% without revision and 6% after a single revision), reaching a 56% WR against against Llama-3.1-8B-Instruct.
- Abstract(参考訳): PPOやDPOのようなオンラインおよびオフラインのRLHFメソッドは、AIと人間の好みを合わせることに成功している。
しかし、その成功にもかかわらず、これらの方法には根本的な限界がある。
(a)RLHFでトレーニングされたモデルは、トレーニング中にRLメカニズムや対照的な損失を通じて、誤りやネガティブな例から学ぶことができる。
しかし、推論時には、エラー訂正に固有の自己改善機構が欠如している。
(b)既存手法の最適解はタスク依存度が高く,新しいタスクへの一般化が困難である。
これらの課題に対処するため、実用的で数学的に定義されたオフラインRLHFフレームワークである自己改善ロバスト選好最適化(SRPO)を提案する。
SRPOの背景にある重要な考え方は、人間の嗜好から学ぶことの問題を自己改善のプロセスとして、数学的には、自己改善の方針と生成の方針を敵対的な方法で共同で最適化するmin-maxの目的として定式化することである。
重要なことに、この最適化問題の解決策はトレーニングタスクとは独立しているため、その変更に対して堅牢である。
そして、この目的を非逆向きのオフライン損失として再構成し、標準的な教師あり学習手法を大規模に活用することで効率よく最適化できることを示す。
SRPOの有効性を示すために,AI Win-Rate (WR) と人間 (GOLD) の完成度を比較した。
XSumデータセットでテストすると、SRPOは5回の自己修正の後、DPOのマージンを15%上回り、90%のWRを達成した。
さらに、挑戦的なアレーナ・ハードのプロンプトでは、SRPOはDPOとIPOの両方(リビジョンなしで4%、シングルリビジョン後に6%)を上回り、Llama-3.1-8B-インストラクトに対して56%のWRに達した。
関連論文リスト
- Lean and Mean: Decoupled Value Policy Optimization with Global Value Guidance [52.65461207786633]
政策に基づく人間からのフィードバックからの強化学習は、大きな言語モデルと人間の嗜好の整合に不可欠である。
俳優と批評家の合同トレーニングと、事前訓練された一定の報酬モデルによる指導が必要である。
従来の報酬モデリングを事前訓練されたEmphglobal Value Model(GVM)に置き換えるリーンフレームワークである textbfDecoupled Value Policy Optimization (DVPO) を提案する。
論文 参考訳(メタデータ) (2025-02-24T08:11:33Z) - Improving Multi-Step Reasoning Abilities of Large Language Models with Direct Advantage Policy Optimization [22.67700436936984]
ステップレベルのオフライン強化学習アルゴリズムであるDAPO(Direct Advantage Policy Optimization)を導入する。
DAPOは、各ステップにおける推論精度を予測するために批判機能を使用し、それによって高密度信号を生成して生成戦略を洗練させる。
その結果,DAPO は SFT モデルと RL モデルの両方の数学的・コード的能力を効果的に向上し,DAPO の有効性を示すことができた。
論文 参考訳(メタデータ) (2024-12-24T08:39:35Z) - Direct Preference Optimization Using Sparse Feature-Level Constraints [47.15096507230884]
特徴レベルの制約付き優先度最適化は、安定性を確保しつつアライメントプロセスを簡素化するために設計された新しい手法である。
提案手法は、訓練されたスパースオートエンコーダで活性化されるスパース機能と、逐次KL分散の品質を用いて効率を向上する。
論文 参考訳(メタデータ) (2024-11-12T07:54:13Z) - Uncertainty-Penalized Direct Preference Optimization [52.387088396044206]
我々は、優先不確実性ペナル化スキームを導入し、DPOの悲観的な枠組みを開発する。
ペナル化は、不確実なサンプルの損失勾配を減衰させる損失の補正として機能する。
我々は,バニラDPOと比較して全体的な性能が向上し,高い不確実性選択/拒絶反応によるプロンプトの完成度も向上した。
論文 参考訳(メタデータ) (2024-10-26T14:24:37Z) - $α$-DPO: Adaptive Reward Margin is What Direct Preference Optimization Needs [45.46582930202524]
$alpha$-DPOは、大規模言語モデルの適応的優先最適化アルゴリズムである。
ポリシーモデルと参照モデルのバランスを取り、パーソナライズされた報酬マージンを達成する。
さまざまなモデル設定でDPOとSimPOを一貫して上回ります。
論文 参考訳(メタデータ) (2024-10-14T04:29:57Z) - Correcting the Mythos of KL-Regularization: Direct Alignment without Overoptimization via Chi-Squared Preference Optimization [78.82586283794886]
新たなオフラインアライメントアルゴリズムである$chi2$-Preference Optimization(chi$PO)を提案する。
$chi$POは、正規化による不確実性に直面して悲観主義の原理を実装している。
過度な最適化には確実に堅牢であり、単一政治の集中性に基づいたサンプル複雑度保証を実現する。
論文 参考訳(メタデータ) (2024-07-18T11:08:40Z) - Iterative Nash Policy Optimization: Aligning LLMs with General Preferences via No-Regret Learning [55.65738319966385]
我々は、新しいオンラインアルゴリズム、反復的ナッシュポリシー最適化(INPO)を提案する。
従来の方法とは異なり、INPOは個々の応答に対する期待される勝利率を推定する必要性を回避している。
LLaMA-3-8BベースのSFTモデルで、INPOはAlpacaEval 2.0で42.6%、Arena-Hardで37.8%の勝利率を達成した。
論文 参考訳(メタデータ) (2024-06-30T08:00:34Z) - Learning Reward and Policy Jointly from Demonstration and Preference Improves Alignment [58.049113055986375]
我々は、報酬モデルとポリシーをトレーニングするために、AIHF(Alignment with Integrated Human Feedback)と呼ばれる単一ステージアプローチを開発する。
提案した手法は、一般的なアライメントアルゴリズムに容易に還元し、活用できる、効率的なアルゴリズムの集合を認めている。
本研究では,LLMにおけるアライメント問題と,MuJoCoにおけるロボット制御問題を含む広範な実験により,提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-06-11T01:20:53Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
人間の嗜好を学習する際の分布変化と不確実性の一形態として,不一致の原因を同定する。
過度な最適化を緩和するために、まず、逆選択された報酬モデルに最適なポリシーを選択する理論アルゴリズムを提案する。
報奨モデルとそれに対応する最適ポリシーの等価性を用いて、優先最適化損失と教師付き学習損失を組み合わせた単純な目的を特徴とする。
論文 参考訳(メタデータ) (2024-05-26T05:38:50Z) - Overcoming Reward Overoptimization via Adversarial Policy Optimization with Lightweight Uncertainty Estimation [46.61909578101735]
AdvPO(Adversarial Policy Optimization)は、人間からの強化学習における報酬過度最適化の問題に対する新しい解決策である。
本稿では,報酬モデルの最後の層埋め込みにのみ依存して,報酬の不確実性を定量化する軽量な手法を提案する。
論文 参考訳(メタデータ) (2024-03-08T09:20:12Z) - Towards Efficient Exact Optimization of Language Model Alignment [93.39181634597877]
嗜好データから直接ポリシーを最適化するために、直接選好最適化(DPO)が提案された。
問題の最適解に基づいて導出されたDPOが,現実の最適解の妥協平均探索近似に繋がることを示す。
本稿では、アライメント目的の効率的な精度最適化(EXO)を提案する。
論文 参考訳(メタデータ) (2024-02-01T18:51:54Z) - REBEL: A Regularization-Based Solution for Reward Overoptimization in Robotic Reinforcement Learning from Human Feedback [61.54791065013767]
報酬関数とユーザの意図、価値観、社会的規範の相違は、現実世界で破滅的なものになる可能性がある。
人間の嗜好から報酬関数を学習することで、このミスアライメント作業を軽減するための現在の方法。
本稿では,ロボットRLHFフレームワークにおける報酬正規化の新たな概念を提案する。
論文 参考訳(メタデータ) (2023-12-22T04:56:37Z) - Direct Preference Optimization: Your Language Model is Secretly a Reward Model [119.65409513119963]
本稿では,RLHFにおける報酬モデルの新たなパラメータ化について紹介する。
DPO(Direct Preference Optimization)と呼ばれる結果のアルゴリズムは、安定的で、性能が高く、計算的にも軽量である。
我々の実験は、DPOが人間の好みに合わせて微調整できるだけでなく、既存の方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-05-29T17:57:46Z) - OptiDICE: Offline Policy Optimization via Stationary Distribution
Correction Estimation [59.469401906712555]
より原理的な方法で過大評価を防止するオフライン強化学習アルゴリズムを提案する。
提案アルゴリズムであるOptiDICEは,最適ポリシーの定常分布補正を直接推定する。
OptiDICEは最先端の手法と競合して動作することを示す。
論文 参考訳(メタデータ) (2021-06-21T00:43:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。