論文の概要: An efficient solution to Hidden Markov Models on trees with coupled branches
- arxiv url: http://arxiv.org/abs/2406.01663v1
- Date: Mon, 3 Jun 2024 18:00:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 21:11:55.605742
- Title: An efficient solution to Hidden Markov Models on trees with coupled branches
- Title(参考訳): 枝が結合した木上の隠れマルコフモデルに対する効率的な解法
- Authors: Farzan Vafa, Sahand Hormoz,
- Abstract要約: 木上の隠れモデル(HMM)のフレームワークを拡張して、データのツリーのような構造が結合されたブランチを含むシナリオに対処する。
本研究では,木系HMMと分岐した分岐木に対する確率,復号化,パラメータ学習問題を効率的に解くプログラミングアルゴリズムを開発した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hidden Markov Models (HMMs) are powerful tools for modeling sequential data, where the underlying states evolve in a stochastic manner and are only indirectly observable. Traditional HMM approaches are well-established for linear sequences, and have been extended to other structures such as trees. In this paper, we extend the framework of HMMs on trees to address scenarios where the tree-like structure of the data includes coupled branches -- a common feature in biological systems where entities within the same lineage exhibit dependent characteristics. We develop a dynamic programming algorithm that efficiently solves the likelihood, decoding, and parameter learning problems for tree-based HMMs with coupled branches. Our approach scales polynomially with the number of states and nodes, making it computationally feasible for a wide range of applications and does not suffer from the underflow problem. We demonstrate our algorithm by applying it to simulated data and propose self-consistency checks for validating the assumptions of the model used for inference. This work not only advances the theoretical understanding of HMMs on trees but also provides a practical tool for analyzing complex biological data where dependencies between branches cannot be ignored.
- Abstract(参考訳): 隠れマルコフモデル(HMM)はシーケンシャルデータをモデリングするための強力なツールであり、基礎となる状態は確率的に進化し、間接的にしか観測できない。
従来のHMMアプローチは線形列に対して十分に確立されており、木などの他の構造にも拡張されている。
本稿では、木上のHMMの枠組みを拡張し、データのツリーのような構造が結合枝を含むシナリオに対処する。
本研究では,木系HMMと分岐した分岐木に対する確率,復号化,パラメータ学習問題を効率的に解く動的プログラミングアルゴリズムを開発した。
提案手法は状態数やノード数と多項式的にスケールし,幅広いアプリケーションで計算可能であり,下フロー問題に悩まされない。
シミュレーションデータに適用してアルゴリズムを実証し,推論に使用するモデルの仮定を検証するための自己整合性チェックを提案する。
この研究は、木上のHMMの理論的理解を前進させるだけでなく、枝間の依存関係を無視できない複雑な生物学的データを解析するための実用的なツールも提供する。
関連論文リスト
- Linear Mode Connectivity in Differentiable Tree Ensembles [13.704584231053675]
線形モード接続性(英: Linear Mode Connectivity, LMC)は、パラメータ空間における線形補間モデルに対して一貫して存在する現象である。
我々はまず,木に基づく微分可能モデルであるソフトツリーニューロンのLCCを実現する。
論文 参考訳(メタデータ) (2024-05-23T14:11:26Z) - Rapid and Precise Topological Comparison with Merge Tree Neural Networks [7.443474354626664]
本稿では、マージツリー比較用に設計された学習ニューラルネットワークモデルである、マージツリーニューラルネットワーク(MTNN)を紹介する。
特に、ベンチマークデータセットで従来の最先端を100倍以上スピードアップし、エラー率を0.1%以下に維持しています。
論文 参考訳(メタデータ) (2024-04-08T21:26:04Z) - Beyond TreeSHAP: Efficient Computation of Any-Order Shapley Interactions
for Tree Ensembles [6.664930499708017]
シェープリー値(Shapley value, SV)は、予測の付加的特徴属性を定量化するための説明可能な人工知能(XAI)研究における概念である。
TreeSHAP-IQは木モデル予測のための任意の順序加法シャプリー相互作用を効率的に計算する手法である。
論文 参考訳(メタデータ) (2024-01-22T16:08:41Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
ニューラルネットワークのための新しいヘテロジニアスメモリ拡張手法を提案する。
学習可能なメモリトークンをアテンション機構付きで導入することにより、膨大な計算オーバーヘッドを伴わずに性能を効果的に向上させることができる。
In-distriion (ID) と Out-of-distriion (OOD) の両方の条件下での様々な画像およびグラフベースのタスクに対するアプローチを示す。
論文 参考訳(メタデータ) (2023-10-17T01:05:28Z) - ARTree: A Deep Autoregressive Model for Phylogenetic Inference [6.935130578959931]
グラフニューラルネットワーク(GNN)に基づく系統推定のための深層自己回帰モデルを提案する。
本研究では,本手法の有効性と効率を,実データツリーのトポロジー密度推定と変分系統推定問題のベンチマークで実証する。
論文 参考訳(メタデータ) (2023-10-14T10:26:03Z) - Hierarchical clustering with dot products recovers hidden tree structure [53.68551192799585]
本稿では,階層構造の回復に着目した凝集クラスタリングアルゴリズムの新しい視点を提案する。
クラスタを最大平均点積でマージし、例えば最小距離やクラスタ内分散でマージしないような、標準的なアルゴリズムの単純な変種を推奨する。
このアルゴリズムにより得られた木は、汎用確率的グラフィカルモデルの下で、データ中の生成的階層構造をボナフェイド推定することを示した。
論文 参考訳(メタデータ) (2023-05-24T11:05:12Z) - TreeFlow: Going beyond Tree-based Gaussian Probabilistic Regression [0.0]
ツリーアンサンブルを使うことの利点と柔軟な確率分布をモデル化する能力を組み合わせたツリーベースアプローチであるTreeFlowを紹介した。
提案手法は, 諸量, 特徴量, 目標寸法の異なる回帰ベンチマークを用いて評価する。
論文 参考訳(メタデータ) (2022-06-08T20:06:23Z) - Entailment Tree Explanations via Iterative Retrieval-Generation Reasoner [56.08919422452905]
我々はIRGR(Iterative Retrieval-Generation Reasoner)と呼ばれるアーキテクチャを提案する。
本モデルでは,テキストの前提からステップバイステップの説明を体系的に生成することにより,与えられた仮説を説明することができる。
前提条件の検索と細分化木の生成に関する既存のベンチマークを上回り、全体の正しさはおよそ300%向上した。
論文 参考訳(メタデータ) (2022-05-18T21:52:11Z) - Complex Event Forecasting with Prediction Suffix Trees: Extended
Technical Report [70.7321040534471]
複合イベント認識(CER)システムは、イベントのリアルタイムストリーム上のパターンを"即時"検出する能力によって、過去20年間に人気が高まっている。
このような現象が実際にCERエンジンによって検出される前に、パターンがいつ発生するかを予測する方法が不足している。
複雑なイベント予測の問題に対処しようとする形式的なフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-01T09:52:31Z) - Probabilistic Case-based Reasoning for Open-World Knowledge Graph
Completion [59.549664231655726]
ケースベース推論(CBR)システムは,与えられた問題に類似した事例を検索することで,新たな問題を解決する。
本稿では,知識ベース(KB)の推論において,そのようなシステムが実現可能であることを示す。
提案手法は,KB内の類似エンティティからの推論パスを収集することにより,エンティティの属性を予測する。
論文 参考訳(メタデータ) (2020-10-07T17:48:12Z) - Parameterizing Branch-and-Bound Search Trees to Learn Branching Policies [76.83991682238666]
Branch and Bound (B&B) は、Mixed-Integer Linear Programming Problem (MILP) の解法として一般的に用いられる木探索法である。
本稿では,新しい模倣学習フレームワークを提案し,分岐を表現するための新しい入力機能とアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-02-12T17:43:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。