Session Context Embedding for Intent Understanding in Product Search
- URL: http://arxiv.org/abs/2406.01702v2
- Date: Wed, 10 Jul 2024 19:21:51 GMT
- Title: Session Context Embedding for Intent Understanding in Product Search
- Authors: Navid Mehrdad, Vishal Rathi, Sravanthi Rajanala,
- Abstract summary: We propose a novel method for vectorizing session context for capturing and utilizing context in retrieval and rerank.
In the runtime, session embedding is an alternative to query embedding, saved and updated after each request in the session.
We demonstrate improvements over strategies ignoring session context in the runtime for user intent understanding.
- Score: 0.4551615447454769
- License:
- Abstract: It is often noted that single query-item pair relevance training in search does not capture the customer intent. User intent can be better deduced from a series of engagements (Clicks, ATCs, Orders) in a given search session. We propose a novel method for vectorizing session context for capturing and utilizing context in retrieval and rerank. In the runtime, session embedding is an alternative to query embedding, saved and updated after each request in the session, it can be used for retrieval and ranking. We outline session embedding's solution to session-based intent understanding and its architecture, the background to this line of thought in search and recommendation, detail the methodologies implemented, and finally present the results of an implementation of session embedding for query product type classification. We demonstrate improvements over strategies ignoring session context in the runtime for user intent understanding.
Related papers
- Aligning Query Representation with Rewritten Query and Relevance Judgments in Conversational Search [32.35446999027349]
We leverage both rewritten queries and relevance judgments in the conversational search data to train a better query representation model.
The proposed model -- Query Representation Alignment Conversational Retriever, QRACDR, is tested on eight datasets.
arXiv Detail & Related papers (2024-07-29T17:14:36Z) - Query-oriented Data Augmentation for Session Search [71.84678750612754]
We propose query-oriented data augmentation to enrich search logs and empower the modeling.
We generate supplemental training pairs by altering the most important part of a search context.
We develop several strategies to alter the current query, resulting in new training data with varying degrees of difficulty.
arXiv Detail & Related papers (2024-07-04T08:08:33Z) - Understanding Inter-Session Intentions via Complex Logical Reasoning [50.199811535229045]
We present the task of logical session complex query answering (LS-CQA)
We frame the problem of complex intention understanding as an LS-CQA task on an aggregated hypergraph of sessions, items, and attributes.
We introduce a new model, the Logical Session Graph Transformer (LSGT), which captures interactions among items across different sessions and their logical connections.
arXiv Detail & Related papers (2023-12-21T14:03:30Z) - Social Commonsense-Guided Search Query Generation for Open-Domain
Knowledge-Powered Conversations [66.16863141262506]
We present a novel approach that focuses on generating internet search queries guided by social commonsense.
Our proposed framework addresses passive user interactions by integrating topic tracking, commonsense response generation and instruction-driven query generation.
arXiv Detail & Related papers (2023-10-22T16:14:56Z) - Implicit Session Contexts for Next-Item Recommendations [27.250637187941532]
Session contexts are not explicitly given in most datasets.
We propose ISCON, which implicitly contextualizes sessions.
ISCON has superior next-item prediction accuracy than state-of-the-art models.
arXiv Detail & Related papers (2022-08-18T21:48:16Z) - Unsupervised Conversation Disentanglement through Co-Training [30.304609312675186]
We explore to train a conversation disentanglement model without referencing any human annotations.
Our method is built upon a deep co-training algorithm, which consists of two neural networks.
For the message-pair classifier, we enrich its training data by retrieving message pairs with high confidence.
arXiv Detail & Related papers (2021-09-07T17:05:18Z) - Session-Aware Query Auto-completion using Extreme Multi-label Ranking [61.753713147852125]
We take the novel approach of modeling session-aware query auto-completion as an e Multi-Xtreme Ranking (XMR) problem.
We adapt a popular XMR algorithm for this purpose by proposing several modifications to the key steps in the algorithm.
Our approach meets the stringent latency requirements for auto-complete systems while leveraging session information in making suggestions.
arXiv Detail & Related papers (2020-12-09T17:56:22Z) - Conversational Semantic Parsing [50.954321571100294]
Session-based properties such as co-reference resolution and context carryover are processed downstream in a pipelined system.
We release a new session-based, compositional task-oriented parsing dataset of 20k sessions consisting of 60k utterances.
We propose a new family of Seq2Seq models for the session-based parsing above, which achieve better or comparable performance to the current state-of-the-art on ATIS, SNIPS, TOP and DSTC2.
arXiv Detail & Related papers (2020-09-28T22:08:00Z) - Query Resolution for Conversational Search with Limited Supervision [63.131221660019776]
We propose QuReTeC (Query Resolution by Term Classification), a neural query resolution model based on bidirectional transformers.
We show that QuReTeC outperforms state-of-the-art models, and furthermore, that our distant supervision method can be used to substantially reduce the amount of human-curated data required to train QuReTeC.
arXiv Detail & Related papers (2020-05-24T11:37:22Z) - Using Image Captions and Multitask Learning for Recommending Query
Reformulations [11.99358906295761]
We aim to enhance the query recommendation experience for a commercial image search engine.
Our proposed methodology incorporates current state-of-the-art practices from relevant literature.
arXiv Detail & Related papers (2020-03-02T08:22:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.